Abstract:
Various methods and apparatuses are provided relating to separation of a substrate into a plurality of parts. For example, first a partial separation is performed and then the partially separated substrate is completely separated into a plurality of parts.
Abstract:
A vertical transistor component includes a semiconductor body with first and second surfaces, a drift region, and a source region and body region arranged between the drift region and the first surface. The body region is also arranged between the source region and the drift region. The vertical transistor component further includes a gate electrode arranged adjacent to the body zone, a gate dielectric arranged between the gate electrode and the body region, and a drain region arranged between the drift region and the second surface. A source electrode electrically contacts the source region, is electrically insulated from the gate electrode and arranged on the first surface. A drain electrode electrically contacts the drain region and is arranged on the second surface. A gate contact electrode is electrically insulated from the semiconductor body, extends in the semiconductor body to the second surface, and is electrically connected with the gate electrode.
Abstract:
A first embodiment relates to a semiconductor component. The semiconductor component has a semiconductor body with a bottom side and a top side spaced distant from the bottom side in a vertical direction. In the vertical direction, the semiconductor body has a certain thickness. The semiconductor component further has a crack sensor configured to detect a crack in the semiconductor body. The crack sensor extends into the semiconductor body. A distance between the crack sensor and the bottom side is less than the thickness of the semiconductor body.
Abstract:
A semiconductor device includes a trench transistor cell array in a silicon semiconductor body with a first main surface and a second main surface opposite to the first main surface. A main lateral face of the semiconductor body between the first main surface and the second main surface has a first length along a first lateral direction parallel to the first and second main surfaces. The first length is equal or greater than lengths of other lateral faces of the semiconductor body. The trench transistor cell array includes predominantly linear gate trench portions. At least 50% of the linear gate trench portions extend along a second lateral direction or perpendicular to the second lateral direction. An angle between the first and second lateral directions is in a range of 45°±15°.
Abstract:
One embodiment of a semiconductor device includes a dense trench transistor cell array. The dense trench transistor cell array includes a plurality of transistor cells in a semiconductor body. A width w3 of a transistor mesa region of each of the plurality of transistor cells and a width w1 of a first trench of each of the plurality of transistor cells satisfy the following relationship: w3
Abstract:
A test method in accordance with one or more embodiments may include: providing a semiconductor device to be tested, the semiconductor device including at least one device cell, the at least one device cell having at least one trench, at least one first terminal electrode region and at least one second terminal electrode region, at least one gate electrode, and at least one additional electrode disposed at least partially in the at least one trench, wherein an electrical potential of the at least one additional electrode may be controlled separately from electrical potentials of the at least one first terminal electrode region, the at least one second terminal electrode region and the at least one gate electrode; and applying at least one electrical test potential to at least the at least one additional electrode to detect defects in the at least one device cell.
Abstract:
A vertical transistor component includes a semiconductor body with first and second surfaces, a drift region, and a source region and body region arranged between the drift region and the first surface. The body region is also arranged between the source region and the drift region. The vertical transistor component further includes a gate electrode arranged adjacent to the body zone, a gate dielectric arranged between the gate electrode and the body region, and a drain region arranged between the drift region and the second surface. A source electrode electrically contacts the source region, is electrically insulated from the gate electrode and arranged on the first surface. A drain electrode electrically contacts the drain region and is arranged on the second surface. A gate contact electrode is electrically insulated from the semiconductor body, extends in the semiconductor body to the second surface, and is electrically connected with the gate electrode.
Abstract:
A transistor includes: gate electrodes and field electrodes, wherein in each case one gate electrode and one field electrode are arranged one above another in a vertical direction in a common trench of a semiconductor body; a gate pad to which the gate electrodes are connected; and a source metallization arranged above the semiconductor body. The field electrodes of a first group include at least one contact section. The at least one contact section is arranged between two sections of a gate electrode arranged in the same trench and is connected to the source metallization. The two sections of the gate electrode are separated from one another in a region of the contact section. At least one of the two sections of the gate electrode arranged in the same trench is electrically connected to a gate electrode arranged in a further trench by way of a gate connecting electrode.
Abstract:
A semiconductor device includes a semiconductor body having a first surface. A first trench extends in a vertical direction into the semiconductor body. The semiconductor device also includes a first interlayer in the first trench and a first dopant source in the first trench. The first interlayer is arranged between the first dopant source and the semiconductor body, and the first dopant source includes a first dopant species. The semiconductor device also includes a semiconductor area doped with the first dopant species and which completely surrounds the first trench at least at a depth in the semiconductor body and adjoins the first trench.
Abstract:
A semiconductor device of an embodiment includes a transistor device in a semiconductor die including a semiconductor body. The transistor device includes transistor cells connected in parallel and covering at least 80% of an overall active area at a first surface of the semiconductor body. The semiconductor device further includes a control terminal contact area at the first surface electrically connected to a control electrode of each of the transistor cells. A first load terminal contact area at the first surface electrically connected to a first load terminal region of each of the transistor cells. The semiconductor device further includes a resistor in the semiconductor die and electrically coupled between the control terminal contact area and the first load terminal contact area, and a pn junction diode electrically connected in series with the resistor.