Abstract:
This invention relates to a composite material that comprises a support member that has a plurality of pores extending through the support member and, located in the pores of the support member, and filling the pores of the support member, a macroporous cross-linked gel. The invention also relates to a process for preparing the composite material described above, and to its use. The composite material is suitable, for example, for separation of substances, for example by filtration or adsorption, including chromatography, for use as a support in synthesis or for use as a support for cell growth.
Abstract:
The present invention relates to cationic, gel forming, guanidinated polysaccharides of Formula I, their use as absorbent materials, and to processes for producing same: Formula I wherein Z1, Z2, and Z3 are independently selected from the group consisting of hydrogen, C1-C10alkyl, substituted C1-C10alkyl, C5-C7cycloalkyl, and benzyl; and m is an integer ranging from to 2,000,000. The absorbent guanidinated polysaccharides of Formula I have absorbent properties suitable for use in personal care products.
Abstract:
The present invention provides novel, polymeric supports, methods of making, and methods of using the supports, that have a fluorinated, amidated surface. The supports include polymeric microbeads, thin layers or membranes, plates, monoliths and the like. The supports are useful as packing materials for normal phase, reverse phase, and size exclusion chromatography, and provide high speed separation of analytes with excellent resolution. The fluorinated, amidated surface may include a composition comprising a plurality of repeating units, for example, having the following structure:
Abstract:
This invention relates to functional nonwoven filter media provided by radiation-induced graft copolymerization and its production method. Meltblown type of nonwoven (Meltblown) comprised of fine fibers, less than 8 micron in diameter, of polyolefin or polyamide is chosen as the suitable grafting trunk polymer. The production methods are composed of following steps, 1) irradiation less than 30 kGy dose to the Meltblown with electron beam or gamma ray; 2) graft copolymerization of emulsified vinyl monomer onto the Meltblown; and 3) chemical conversion of ion exchange group onto the grafted vinyl monomer. These steps are independently conducted in their suitable operation conditions.
Abstract:
The present invention is a surface-modified base matrix comprised of a porous polymeric base matrix onto which branched hydrophilic polyhydroxy-functional polymers have been covalently attached, wherein the polyhydroxy-functional polymers are hyperbranched polymers presenting a degree of branching (DB) of at least about 0.2 and each polymer is tethered to the base matrix at two or more points. The present matrix can for example be a cross-linked carbohydrate material, such as agarose, and the hyperbranched hydrophilic polymer can e.g. be a copolymer of epichiorohydrin and a sugar. The invention also relates to a method of surface-modification of a porous base matrix by activating functional hydroxy groups thereon and contacting the activated matrix with a hydrophilic hyperbranched hydroxy-functional polymer.
Abstract:
Disclosed are filter elements constructed of a filter support material coated with an acetoacetate-functional polymeric composition that reacts with and removes aldehydes, especially formaldehyde, present in gases such as air. Also disclosed are methods for the removal of aldehydes utilizing the coated filter support materials.
Abstract:
Functionalized porous poly(aryl ether ketone) articles are prepared by reacting ketone groups in the backbone of poly(aryl ether ketone) polymer with a primary amine reagent. Preferred functional primary amines are primary aliphatic amines or substituted hydrazines containing one or more target functional groups including polar groups, such as hydroxyl groups, ˜OH, amino groups, ˜NH2, ˜NHR, ˜NRR′, and ethylene oxide groups, ˜OCH2CH2—, negatively or positively charged ionic groups, such as ˜SO3−, ˜COO−, and ˜NH4+ groups, hydrophobic groups such as siloxane or perfluorcarbone groups, and non-polar groups, such as linear or branched hydrocarbon groups. The functionalized porous poly(aryl ether ketone) article can be prepared by reacting primary amine with a pre-formed, shaped porous poly(aryl ether ketone) article or by functionalizing the surface of a non-porous precursor article that is subsequently converted into a porous article.
Abstract:
The present invention is a process of manufacture of one or more polysaccharide beads, comprising generating an aerosol of an aqueous polysaccharide solution, cooling the droplets of said aerosol in air to initiate gelling thereof and collecting droplets as gelled beads in a liquid or on a surface, characterised by adding a hydrophilic vapour pressure-lowering agent to said polysaccharide solution.
Abstract:
[OBJECT] The present invention provides a method for selecting and eliminating endotoxin selectively from a solution where a highly acidic substance such as heparin co-exists, and an adsorbent used therefor. [MEANS FOR SOLVING] The present invention also provides a method for providing the endotoxin adsorbent, which comprises partially modifying amino groups contained within an amino group-containing molecule used as a ligand of the endotoxin adsorbent, with a molecule that is capable of reacting with an amino group.
Abstract:
The present invention provides an oxygen absorber which exhibits a high oxygen-absorbing ability even if a transition metal salt as a catalyst for making oxygen-absorbing ability high is not added thereto and further keeps a high mechanical strength even after the absorber absorbs oxygen. An oxygen absorber containing a cyclized conjugated diene polymer as an active ingredient. About the cyclized conjugated diene polymer, the percent decrease in unsaturated-bond amount is preferably 10% or more and the weight-average molecular weight preferably ranges 1,000 to 1,000,000. The oxygen absorber may further contain a thermoplastic resin. The content of an antioxidant in the oxygen absorber is preferably 500 ppm or lower. The oxygen absorber is in a film, sheet or powder.