Abstract:
A chromatographic material including a substrate having a surface and having a polymeric layer covalently bound to the surface; the polymeric layer comprising polymer molecules covalently attached to the surface of the substrate, each polymer molecule being attached to the surface via multiple siloxane bonds and each polymer molecule being connected to one or more functionalizing compounds that each comprise a functional group, wherein the polymeric layer is formed by covalently attaching polymer molecules to the surface of the substrate via multiple siloxane bonds, each polymer molecule containing multiple first reactive groups, and reacting the first reactive groups of the attached polymer molecules with at least one functionalizing compound that comprises a second reactive group that is reactive with the first reactive groups and that further comprises a functional group. Preferred conditions of reacting the polymer with the substrate include elevated temperature and reduced pressure.
Abstract:
The methods of the invention employ targeted magnetic particles, preferably targeted nanomagnetic particles, and targeted buoyant particles such as buoyant microparticles and microbubbles. Among the benefits of the invention is the ability to combine targeted magnetic particles with differentially targeted buoyant particles to achieve separation of two or more specifically cell targeted populations during the same work flow.
Abstract:
Chromatography devices and methods for forming and using the devices are described. The devices include a polyimide-based support phase and a polymer grafted to a surface of the polyimide-based support phase. A microwave-assisted graft polymerization protocol is described to form the polymer at the surface of the support phase. Devices can be utilized in high-efficiency separation of macromolecules such as proteins.
Abstract:
The present invention relates to an adsorption medium, especially a chromatography medium, to a method for the production thereof, and to the use of the adsorption medium according to the invention or of an adsorption medium produced according to the invention for the purification of biomolecules.
Abstract:
A chromatographic material including a substrate having a surface and having a polymeric layer covalently bound to the surface; the polymeric layer comprising polymer molecules covalently attached to the surface of the substrate, each polymer molecule being attached to the surface via multiple siloxane bonds and each polymer molecule being connected to one or more functionalizing compounds that each comprise a functional group, wherein the polymeric layer is formed by covalently attaching polymer molecules to the surface of the substrate via multiple siloxane bonds, each polymer molecule containing multiple first reactive groups, and reacting the first reactive groups of the attached polymer molecules with at least one functionalizing compound that comprises a second reactive group that is reactive with the first reactive groups and that further comprises a functional group. Preferred conditions of reacting the polymer with the substrate include elevated temperature and reduced pressure.
Abstract:
A field kit for collecting analytical samples has one or more dynamic fabric phase sorptive extraction (DFPSE) devices and/or fabric phase sorptive extraction (FPSE) devices and a plurality of containers for storing and transporting the DFPSEs and/or FPSEs that were used for sampling. The field kit has media for documenting information concerning the site, quantity, date, and/or other pertinent information concerning the sampling. Samples can be maintained within the kit for any required period of storage. Sampling can be done once or a plurality of times, such that an initial analysis can be carried out and analysis can be repeated using a portion of a FPSE or with a redundant FPSE that has been stored. The DFPSE device is a sampling device including a plurality of FPSEs, such that a number of different types of analytes can be sampled in different layers of the DFPSE. At least one external surface layer of the DFPSE is a barrier FPSE that restricts solids from underlying layers.
Abstract:
Articles that contain a solid support with a grafted chain extending from the solid support, methods of making these articles, and various uses of the articles are described. More specifically, the grafted chain has a functional group that can react with or interact with target compound. Alternatively, the functional group on the grafted chain can react with a modifying agent to provide another group that can react with or interact with the target compound. The grafted chains are attached to the solid support through a ring-opened azlactone group. The articles can be used to purify the target compound or to separate the target compound from other molecules in a sample.
Abstract:
A porous substrate capable of adsorptive filtration of a fluid having a porous self-supporting substrate and one or more porous, adsorptive polymeric coatings comprising from about 1 to about 80% of the void volume of the pores of the substrate. The resultant substrate has good convective and diffusive flow and capacity. The substrate may be cross-linked, have one or more capture chemistries attached to it and is useful as a chromatography media for the selective filtration of desired species including biomolecules such as proteins and DNA fragments.
Abstract:
The present invention relates to a surface-modified biomass which is crosslinked with an amine group-containing cationic polymer on the surface of a cell biomass, its preparation method, and a method for recovering valuable metals using the same. The surface-modified biomass of the present invention has an advantage of improving adsorption of and affinity with anionic pollutants as a result of further introducing a cationic functional group by crosslinking of the amine group-containing cationic polymer on the surface of the biomass. In addition, the method for recovering valuable metals with the present invention is environment-friendly, economical, and harmless to the human body.
Abstract:
An enantiomeric isomer separating agent includes a polysaccharide derivative supported by particles of a support by chemical bonding and has a concentration of eluted component (in terms of mass proportion), as determined through a liquid passing test of 20 ppm or lower.