Abstract:
The object of this invention is a method to shoot an object from a flying apparatus. Into an flying apparatus, into certain part of it, like a container that consists at least of a bottom and a shell a spring will be placed, like a push spring that has been loaded in a tense state and that is locked in this position using a fixing organ and further there will be put as an extension of the spring an object to be shot out from the flying apparatus. The fixing organ is thread, metal cord, bar, strip, rope, line, or some combination of these and tension strength (T) is greater than the tension load of the push force (F) to the mentioned fixing organ. the tension strength (T) of the fixing organ is weakened to be less than the mentioned tension load by heating, burning, or melting the mentioned fixing organ by electric energy when the fixing organ breaks, the spring expands into the direction of the object and the push force (F) pushes the object out of the container and off the flying apparatus. The apparatus that is used in the present method is also an object of the invention.
Abstract:
This disclosure generally relates to an automotive drone deployment system that includes at least a vehicle and a deployable drone that is configured to attach and detach from the vehicle. More specifically, the disclosure describes the vehicle and drone remaining in communication with each other to exchange information while the vehicle is being operated in an autonomous driving mode so that the vehicle's performance under the autonomous driving mode is enhanced.
Abstract:
The present invention provides an Unmanned Aircraft System, including an integrated unmanned aerial vehicle and all related components and subsystems that can be packaged and transported as a kit, and customized to fit desired mission profiles, and easily repaired by replacement of damaged components or subsystems. The present invention further provides unmanned aircraft system components and subsystems that facilitate low power and low noise operation, and extended flight times.
Abstract:
A method includes enabling a power supply of a ground sensor device to provide power to one or more components of the ground sensor device based on one or more rotations of a rotor of the ground sensor device.
Abstract:
From the dynamic shock of the parachute canopy applied to an aircraft and unmanned aerial vehicle-(UAV) in an emergency, there is unlimited mechanical force available for exploitation through Bowden cables connected to the ends of the parachute straps, and transfer of the force in the form of a pull onto the emergency safety systems of the aircraft for the safety of passengers, and onto the aerial vehicle-(UAV).
Abstract:
A hollow elliptical-cylindrical hull conformingly houses a hollow rectangular-prismatic cabin whereby the four longitudinal parallel outside edges of the latter make contact with the inside surface of the former. The fully constructed aircraft (either non-powered or powered) includes the integral hull-plus-cabin structure along with nose, tail and airfoil structures that are coupled therewith. The cabin conformingly accommodates hollow rectangular-prismatic modules useful for cargo storage. While the nose and/or tail structure is uncoupled from the integral hull-plus-cabin structure, the modules are inserted into the cabin and the cabin is sealed. The aircraft is lifted (e.g., via airplane, helicopter, rocket or balloon) to a particular elevation and released, whereupon the two wings fully emerge and the aircraft effects controlled flight until reaching its destination. After landing, the nose and/or tail structure is uncoupled from the integral hull-plus-cabin structure, the cabin is unsealed, and the modules are removed from the cabin.
Abstract:
A miniature unmanned aircraft which uses remotely controlled model aircraft components and technology, and has on-board automatic “on-the-fly” fuel and air mixture adjustment enabling high altitude flight. The aircraft, which may have conventional fuselage, wing, reciprocating piston engine and radio frequency operated controls, also has sensors for sensing atmospheric pressure, atmospheric temperature, engine crankshaft rotational speed, engine temperature, and exhaust temperature. A microprocessor aboard the aircraft receives inputs from the sensors and controls at least one servo to adjust fuel and air mixture according to preprogrammed look-up tables and equations to operate the engine at appropriate fuel-to-air ratios for the altitude and other operating conditions.
Abstract:
A miniature unmanned aircraft which uses remotely controlled model aircraft components and technology, and has on-board automatic nullon-the-flynull fuel and air mixture adjustment enabling high altitude flight. The aircraft, which may have conventional fuselage, wing, reciprocating piston engine and radio frequency operated controls, also has sensors for sensing atmospheric pressure, atmospheric temperature, engine crankshaft rotational speed, engine temperature, and exhaust temperature. A microprocessor aboard the aircraft receives inputs from the sensors and controls at least one servo to adjust fuel and air mixture according to preprogrammed look-up tables and equations to operate the engine at appropriate fuel-to-air ratios for the altitude and other operating conditions.
Abstract:
A miniature, unmanned aircraft having a parachute which deploys automatically under certain conditions. The aircraft has a flight control system based on remotely generated signals, potentially achieves relatively high altitude flight for a remotely controlled aircraft, and can thus operate well beyond line-of-sight control. For safety, an automatically deployed parachute system is provided. The parachute deployment system includes a folded parachute and a propulsion system for expelling the parachute from the aircraft. Preferably, a microprocessor for flight management sends intermittent inhibitory signals to prevent unintended deployment. A deployment signal is generated, illustratively, when the microprocessor fails, when engine RPM fall below a predetermined threshold, and when the aircraft strays from predetermined altitude and course.
Abstract:
A flyer assembly is adapted for launching with, transit in, and deployment from an artillery shell having a central void region extending along a ballistic shell axis. The flyer assembly includes a jettisonable shroud and a flyer. The shroud extends along a shroud axis, and is positionable within the central void region with the shroud axis substantially parallel to the shell axis. The flyer is adapted to withstand a launch acceleration force along a flyer axis when in a first state, and to effect aerodynamic flight when in a second state. When in the first state, the flyer is positionable within the shroud with the flyer axis parallel to the shroud axis and the shell axis. The flyer includes a body member disposed about the flyer axis, and a foldable wing assembly mounted to the body member. The wing assembly is configurable in a folded state characterized by a plurality of nested wing segments when the flyer is in the first state. The wing assembly is configurable in an unfolded state characterized by a substantially uninterrupted aerodynamic surface when the flyer is in the second state. The flyer assembly is adapted to be launched from a ballistic delivery system such as an artillery cannon, and can thus reach a target quickly, without expending system energy stored within the flyer. During launch, the flyer is coupled to the shroud so as to maintain a portion of the flyer in tension during an acceleration of the flyer along the flyer axis resulting from the launch. The flyer assembly is adapted to withstand the high g-load and high temperature environments of a cannon launch, and can tolerate a set-back g load of about 16,000 g.