Abstract:
A method and apparatus are described for fabricating a high aspect ratio MEMS sensor device having multiple vertically-stacked inertial transducer elements (101B, 110D) formed in different layers of a multi-layer semiconductor structure (100) and one or more cap devices (200, 300) bonded to the multi-layer semiconductor structure (100) to protect any exposed inertial transducer element from ambient environmental conditions.
Abstract:
An electronic device includes a vibrating element that detects a predetermined physical quantity, an integrated circuit that is electrically connected to the vibrating element, and a ceramic package. The ceramic package is provided with a first external terminal and a second external terminal to which a constant potential is supplied. The first external terminal is electrically connected to the second external terminal in a first mode, and is electrically connected to an internal node of the integrated circuit in a second mode.
Abstract:
Embodiments of the invention provide a multi-axis sensor, including a first sensor embedded in an embedded substrate to sense a position, and a second sensor formed on a lower cap substrate bonded on the embedded substrate by a wafer level package scheme to sense an inertial force.
Abstract:
A vacuum sealed MEMS and CMOS package and a process for making the same may include a capping wafer having a surface with a plurality of first cavities, a first device having a first surface with a second plurality of second cavities, a hermetic seal between the first surface of the first device and the surface of the capping wafer, and a second device having a first surface bonded to a second surface of the first device. The second device is a CMOS device with conductive through vias connecting the first device to a second surface of the second device, and conductive bumps on the second surface of the second device. Conductive bumps connect to the conductive through vias and wherein a plurality of conductive bumps connect to the second device. The hermetic seal forms a plurality of micro chambers between the capping wafer and the first device.
Abstract:
Embodiments of a sensor device include a sensor substrate and a first cap substrate attached to the sensor substrate with a first bond material. The first bond material is arranged to define a first device cavity. A second cap substrate is attached to the sensor substrate with a second bond material. The second bond material is arranged to define a second device cavity. The second bond material has a lower bonding temperature than the first bond material. The second cap substrate is further secured to the sensor substrate by an adhesive material disposed between the sensor substrate and the second cap substrate.
Abstract:
This document refers to multi-die micromechanical system (MEMS) packages. In an example, a multi-die MEMS package can include a controller integrated circuit (IC) configured to couple to a circuit board, a MEMS IC mounted to a first side of the controller IC, a through silicon via extending through the controller IC between the first side and a second side of the controller IC, the second side opposite the first side, and wherein the MEMS IC is coupled to the through silicon via.
Abstract:
MEMS mass-spring-damper systems (including MEMS gyroscopes and accelerometers) using an out-of-plane (or vertical) suspension scheme, wherein the suspensions are normal to the proof mass, are disclosed. Such out-of-plane suspension scheme helps such MEMS mass-spring-damper systems achieve inertial grade performance. Methods of fabricating out-of-plane suspensions in MEMS mass-spring-damper systems (including MEMS gyroscopes and accelerometers) are also disclosed.
Abstract:
A method of forming a semiconductor device having through molding vias includes eutectic bonding a capping wafer and a base wafer to form a wafer package. The base wafer includes a first chip package portion, a second chip package portion, and a third chip package portion. The capping wafer includes a plurality of isolation trenches and a plurality of separation trenches having a depth greater than the isolation trenches with respect to a same surface of the capping wafer. The method also includes removing a portion of the capping wafer exposing a first chip package portion contact, a second chip package portion contact, and a third chip package portion contact. The method further includes separating the wafer package to separate the wafer package into a first chip package, a second chip package, and a third chip package.
Abstract:
A MEMS device, such as an accelerometer or gyroscope, fabricated in interconnect metallization compatible with a CMOS microelectronic device. In embodiments, a proof mass has a first body region utilizing a thick metal layer that is separated from a thin metal layer. The thick metal layer has a film thickness that is significantly greater than that of the thin metal layer for increased mass. The proof mass further includes a first sensing structure comprising the thin metal layer, but lacking the thick metal layer for small feature sizes and increased capacitive coupling to a surrounding fame that includes a second sensing structure comprising the thin metal layer, but also lacking the thick metal layer. In further embodiments, the frame is released and includes regions with the thick metal layer to better match film stress-induced static deflection of the proof mass.
Abstract:
Methods for fabricating multi-sensor microelectronic packages and multi-sensor microelectronic packages are provided. In one embodiment, the method includes positioning a magnetometer wafer comprised of an array of non-singulated magnetometer die over an accelerometer wafer comprised of an array of non-singulated accelerometer die. The magnetometer wafer is bonded to the accelerometer wafer to produce a bonded wafer stack. The bonded wafer stack is then singulated to yield a plurality of multi-sensor microelectronic packages each including a singulated magnetometer die bonded to a singulated accelerometer die.