Abstract:
A mixed quartz powder contains quartz powder and two or more types of doping element in an amount of from 0.1 to 20 mass %. The aforementioned doped elements include a first dope element selected from the group consisting of N, C and F, and a second dope element selected from the group consisting of Mg, Ca, Sr, Ba, Sc, Y, Ti, Zr, Hf, the lanthanides and the actinides. The “quartz powder” is a powder of crystalline quartz or it is a powder of glassy SiO2 particles. It is made form natural occurring quartz or it is fabricated synthetically. The “quartz powder” may be doped. The compounding ratio of the total amount (M1) of the aforementioned first elements and the total amount (M2) of the aforementioned second elements as the ratio of the number of atoms (M1)/(M2) is preferably from 0.1 to 20. Al as well as the aforementioned doped elements is preferably included in a mixed quartz powder of this invention.
Abstract:
A rare earth-doped core optical fiber of the present invention includes a core comprising a silica glass containing at least aluminum and ytterbium, and a clad provided around the core and comprising a silica glass having a lower refraction index than that of the core, wherein the core has an aluminum concentration of 2% by mass or more, and ytterbium is doped into the core at such a concentration that the light absorption band which appears around a wavelength of 976 nm in the light absorption band by ytterbium contained in the core shows a peak light absorption rate of 800 dB/m or less.
Abstract:
The glass fiber for an optical amplifier has a glass core, a first glass cladding, and a second glass cladding. The core has a composition, in mol %, of Bi2O3, 30-60; SiO2, 0.5-40; B2O3, 0.5-40; Al2O3, 0-30; Ga2O3, 0-20; Ge2O3, 0-25; La2O3, 0-15; Nb2O5, 0-10; SnO2, 0-30; alkali metal oxides, 0-40; and Er2O3, 0.05-8. The process for making the glass fiber includes first making a preform consisting of the core and the first glass cladding by drawing from a double crucible. Then the second glass cladding is formed around the preform by a rod-in-tube process. The glass claddings have a composition that includes a transition metal compound as an absorbent.
Abstract:
An optical fiber including: (i) a silica based, Yb doped core having a first index of refraction n1, said core comprising more than 1 wt % of Yb, said core having less than 5 dB/km loss at a wavelength situated between 1150 nm and 1350 nm and less than 20 dB/km loss at the wavelength of 1380 nm and slope efficiency of over 0.8; and (ii) at least one silica based cladding surrounding the core and having a second index of refraction n2, such that n1>n2.
Abstract:
A method of fabricating doped quartz component is provided herein. In one embodiment, the doped quartz component is a yttrium doped quartz ring configured to support a substrate. In another embodiment, the doped quartz component is a yttrium and aluminum doped cover ring. In yet another embodiment, the doped quartz component is a yttrium, aluminum and nitrogen containing cover ring.
Abstract:
A new class of nanostructured RE-doped SiO2-base materials that display superior fluorescence properties is provided. In particular, high gain combined with a broad and flat spectral band width is observed in material composed of a high fraction of a nano-dispersed metastable silicate phase in a glassy SiO2 matrix, produced by partial devitrification (crystallization) of several glassy Al2O3/Er2O3- and Y2O3/Er2O3-doped SiO2 compositions. Also, a highly deconvoluted spectral emission, with several prominent peaks, is observed in completely devitrified material, consisting of a uniform nano-dispersion of an equilibrium silicate phase in a crystobalite SiO2 matrix. Such enhanced fluorescence properties were observed in heat treated nanopowders prepared by vapor-phase, solgel, rapid solidification, and spray-pyrolysis methods.
Abstract translation:提供了一类新型的具有优异荧光性能的纳米结构的RE掺杂SiO 2基体材料。 特别地,在通过部分失透反应产生的玻璃状SiO 2基体中的高分数纳米分散的亚稳态硅酸盐相组成的材料中观察到具有宽的和平坦的光谱带宽的高增益( 几个玻璃状的Al 2 O 3 / O 2 O 3 - 和Y 2的结晶, O 3组成的二氧化硅组合物。 此外,在完全失透的材料中观察到具有几个突出的峰的高度去卷积的光谱发射,由平底硅酸盐相在均匀的SiO 2基体中的均匀的纳米分散体组成。 在通过气相,溶胶凝胶,快速凝固和喷雾热解方法制备的热处理纳米粉末中观察到这种增强的荧光性质。
Abstract:
As a jig material to use under plasma reaction for producing semiconductors the present invention provides a quartz glass having resistance against plasma corrosion, particularly corrosion resistance against fluorine-based plasma gases, and which is usable without causing anomalies to silicon wafers; the present invention furthermore provides a quartz glass jig, and a method for producing the same. A quartz glass containing 0.1 to 20 wt % in total of two or more types of metallic elements, said metallic elements comprising at least one type of metallic element selected from Group 3B of the periodic table as a first metallic element and at least one type of metallic element selected from the group consisting of Mg, Ca, Sr, Ba, Sc, Y, Ti, Zr, Hf, lanthanoids, and actinoids as a second metallic element, provided that the maximum concentration of each of the second metallic elements is 1.0 wt % or less.
Abstract:
A mixed quartz powder contains quartz powder and two or more types of doping element in an amount of from 0.1 to 20 mass %. The aforementioned doped elements include a first dope element selected from the group consisting of N, C and F, and a second dope element selected from the group consisting of Mg, Ca, Sr, Ba, Sc, Y, Ti, Zr, Hf, the lanthanides and the actinides. The “quartz powder” is a powder of crystalline quartz or it is a powder of glassy SiO2 particles. It is made form natural occurring quartz or it is fabricated synthetically. The “quartz powder” may be doped. The compounding ratio of the total amount (M1) of the aforementioned first elements and the total amount (M2) of the aforementioned second elements as the ratio of the number of atoms (M1)/(M2) is preferably from 0.1 to 20. Al as well as the aforementioned doped elements is preferably included in a mixed quartz powder of this invention.
Abstract:
According to one embodiment a method of making optical fibers comprises: (i) manufacturing a core cane; (ii) situating a plurality of microstructures selected from rods, air filled tubes and glass filed tubes and placing said microstructures adjacent to the core cane, said microstructures forming no more than 3 layers; (iii) placing the core cane with said adjacent microstructures inside a holding clad tube; and (iv) placing interstitial cladding rods inside the holding (clad) tube, thereby forming an assembly comprising a tube containing a core cane, a plurality of microstructures and interstitial cladding rods. The assembly is then drawn into a microstructured cane and an optical fiber is drawn from the microstructured cane. According to several embodiments, the method of making an optical fiber includes providing at least one air hole and at least one stress rod adjacent to the core.
Abstract:
A method of fabricating a glass body that includes a multiplicity of constituents, at least one of which is a dopant (e.g., a rare-earth element) having a low vapor pressure (LVP) precursor comprises the steps of: (a) generating an aerosol from the LVP precursor; (b) separately generating vapors of the other constituents; (c) convecting the aerosol and vapors to deposition system including a substrate; and (d) forming at least one doped layer on a surface of the substrate. In one embodiment, the method also includes filtering the aerosol so as to remove aerosol particles outside of a particular range of sizes. Also described is a unique aerosol generator that is particularly useful in generating aerosols of rare-earth dopants. Particular embodiments directed to the fabrication of Yb-doped optical fibers are described.