Abstract:
A fused silica glass article having greater resistance to damage induced by exposure to laser radiation such as laser induced wavefront distortion at deep ultraviolet (DUV) wavelengths, and behaviors such as fluence dependent transmission, which are related to intrinsic defects in the glass. The improved resistance to laser damage may be achieved in some embodiments by loading the glass article with molecular hydrogen (H2) at temperatures of about 400° C. or less, or 350° C. or less. The combined OH and deuteroxyl (OD) concentration may be less than 10 ppm by weight. In other embodiments, the improved resistance may be achieved by providing the glass with 10 to 60 ppm deuteroxyl (OD) species by weight. In still other embodiments, improved resistance to such laser damage may be achieved by both loading the glass article with molecular hydrogen at temperatures of about 350° C. or less and providing the glass with less than 10 ppm combined OH and OD, or 10 to 60 ppm OD by weight.
Abstract:
A titania-doped quartz glass suited as an EUV lithographic member is prepared by feeding a silicon-providing reactant gas and a titanium-providing reactant gas through a burner along with hydrogen and oxygen, subjecting the reactant gases to oxidation or flame hydrolysis to form synthetic silica-titania fine particles, depositing the particles on a rotating target, and concurrently melting and vitrifying the deposited particles to grow an ingot of titania-doped quartz glass. The target is retracted such that the growth front of the ingot may be spaced a distance of at least 250 mm from the burner tip.
Abstract:
A method for manufacturing deuterium-treated silica glass includes exposing silica glass to a deuterium-containing atmosphere for a predetermined period of time to diffuse deuterium molecules within the silica glass, maintaining the silica glass at 40° C. or higher, and cooling the silica glass to room temperature. The silica glass is a silica glass-based optical fiber having a core made of silica glass, where the core is positioned at a center of the optical fiber and contains at least germanium, and a clad made of silica glass, where the clad surrounds the core and has a lower refractive index than the core. A surface of the silica glass is covered with a resin coating.
Abstract:
A silica glass article, such as a lens in a stepper/scanner system, having saturated induced absorption at wavelengths of less than about 250 nm. Saturated induced absorption is achieved by first removing Si—O defects in the silica glass by forming silicon hydride (SiH) at such defects, and loading the silica glass with hydrogen to react with E′ centers formed by photolysis of SiH in the silica glass article. The silicon hydride is formed by loading the silica glass with molecular hydrogen at temperatures of at least 475° C. After formation of SiH, the silica glass is loaded with additional molecular hydrogen at temperatures of less than 475° C.
Abstract:
A substrate that is suitable for an EUV mask or an EUV mask blank and excellent in flatness, is provided.A substrate for an EUV mask blank, which is made of a silica glass containing from 1 to 12 mass % of TiO2, wherein the surface roughness (rms) in a surface quality area of the substrate is at most 2 nm, and the maximum variation (PV) of the stress in the surface quality area of the substrate is at most 0.2 MPa.
Abstract:
When a synthetic quartz glass substrate is prepared from a synthetic quartz glass block, (I) the block has a hydrogen molecule concentration of 5×1017-1×1019 molecules/cm3, (II) the substrate has a hydrogen molecule concentration of 5×1015-5×1017 molecules/cm3, (III) the substrate has an in-plane variation of its internal transmittance at 193.4 nm which is up to 0.2%, and (IV) the substrate has an internal transmittance of at least 99.6% at 193.4 nm. The synthetic quartz glass substrate has a high transmittance and a uniform transmittance distribution, and is adapted for use with excimer lasers, particularly ArF excimer lasers.
Abstract:
A titania-doped quartz glass containing 3-12 wt % of titania at a titania concentration gradient less than or equal to 0.01 wt %/μm and having an apparent transmittance to 440 nm wavelength light of at least 30% at a thickness of 6.35 mm is of such homogeneity that it provides a high surface accuracy as required for EUV lithographic members, typically EUV lithographic photomask substrates.
Abstract:
To provide an optical component of quartz glass for use in a projection lens system for immersion lithography with an operating wavelength below 250 nm, which is optimized for use with linearly polarized UV laser radiation and particularly with respect to compaction and birefringence induced by anisotropic density change, it is suggested according to the invention that the quartz glass should show the combination of several properties: particularly a glass structure essentially without oxygen defects, a mean content of hydroxyl groups of less than 60 wt ppm, a mean content of fluorine of less than 10 wt ppm, a mean content of chlorine of less than 1 wt ppm. A method for producing such an optical component comprises the following method steps: producing and drying an SiO2 soot body under reducing conditions and treating the dried soot body before or during vitrification with a reagent reacting with oxygen defects of the quartz glass structure.
Abstract:
A synthetic quartz glass for an optical member, which is to be used in an optical device employing an ArF excimer laser beam as a light source at an energy density of at most 2 mJ/cm2/pulse or in an optical device employing a KrF excimer laser beam as a light source at an energy density of at most 30 mJ/cm2/pulse, characterized in that the hydrogen molecule concentration is within a range of at least 1×1016 molecules/cm3 and less than 5×1016 molecules/cm3.
Abstract translation:一种用于光学构件的合成石英玻璃,其用于以能量密度为至多2mJ / cm 2 /脉冲的ArF准分子激光束作为光源的光学装置,或 在使用KrF准分子激光束作为光源的能量密度为至多30mJ / cm 2 /脉冲的光学装置中,其特征在于,所述氢分子浓度在至少 1×10 16分子/ cm 3和小于5×10 16分子/ cm 3。
Abstract:
In a synthetic quartz glass ingot which is produced by vapor phase hydrolyzing or oxidatively decomposing a silica-forming starting compound in an oxyhydrogen flame such that silica growth in a direction occurs at a silica particle deposition and melting face, striae visible when viewed from a direction perpendicular to the silica growth direction are distributed periodically over the silica growth direction. The ingot can be used in the production of optical-grade high-homogeneity synthetic quartz glass elements for excimer laser applications, particularly ArF excimer laser applications, in the production of laser damage-resistant optical elements used with light sources such as excimer lasers, and in the production of UV optical fiber.