Abstract:
The invention relates to a method for preparing metal workpieces for cold forming by applying a lubricant layer either to a metal surface or to a metal surface which has been pre-coated with e.g., a conversion coating. The lubricant layer is formed by contacting the surface with an aqueous lubricant composition which has a content in at least two waxes having distinct properties and a content in organic polymer material, the organic polymer material used predominantly being monomers, oligomers, co-oligomers, polymers and copolymers based on ionomer, acrylic acid/methacrylic acid, epoxide, ethylene, propylene, styrene, urethane, the ester or salt thereof. The invention to the corresponding lubricant composition, to the lubricant layer produced thereof and to its use.
Abstract:
The present invention provides a lubricant composition for hot forming which makes it possible to provide lubricity at 80° C. or more without being peeled or washed by the roll cooling water, and which is easily washed under 40° C. without having water resistance. The lubricant composition for hot forming of the present invention comprises: a solid lubricant from 10 to 40% by mass; water-dispersible synthetic resin from 5 to 20% by mass; inorganic acid amine salt from 0.5 to 5% by mass; and water from 45 to 80% by mass.
Abstract:
A lubricant composition is disclosed that includes (a) a machining oil and (b) an exfoliated graphite nanoparticle (EGN) material stably dispersed in the machining oil. The lubricant composition is a stable suspension and is suitable for use as a liquid lubricant in a Minimum Quantity Lubrication (MQL) process. In the MQL process, the lubricant composition is applied/transferred to a worksite in the form of a mist. The presence of the EGN material in the lubricant composition provides high-temperature stability and lubricity under MQL conditions. A very small amount is transferred especially at high cutting speeds where the mist of the machining oil evaporates, but the EGN material remains on the surface to provide lubricity. Any operation involving machining can benefit from this lubricant composition. The method provides important benefits of reducing chipping on cutting tools and providing the additional lubricity especially when the cutting become very hot and thus extending tool life.
Abstract:
Disclosed is a piston (1) for a combustion engine, comprising hub bores (3) that are provided with plain bearing surfaces (5) and are used for accommodating a piston pin. In order to very effectively and inexpensively prevent the piston pin and the hub bores from jamming and wearing off, a self-lubricating coating (6) made of a thermally cured resin which contains embedded solid lubricant particles is applied directly to at least one subarea (Tb) of the plain bearing surfaces by means of rotary atomization.
Abstract:
A lubricant molded body, which is to be applied to a surface of a photosensitive layer for electrophotography in an image forming apparatus, for example, is composed of at least two kinds of higher fatty acid metallic salts having respectively different carbon numbers. As the higher fatty acid metallic salt that forms lubricant molded body, compounds such as zinc stearate, calcium stearate, barium stearate, aluminum stearate, zinc laurate, calcium laurate, etc. may be recited. The higher fatty acid metallic salts may contain at least one kind of fillers selected from the group consisting of silica, alumina, tungsten disulfide, molybdenum disulfide, graphite fluoride, graphite, boron nitride, polytetrafluoroethylene (PTFE), ethylene tetrafluoroethylene (ETFE), and polyvinylidene fluoride (PVDF).
Abstract:
The present invention concerns a high-temperature lubricant for the hot shaping of high-grade and carbon steels, which has a content of graphite, organic blowing agent and inorganic separation agent, and the use thereof. In order to provide a high-temperature lubricant which can be used for a wide range of steel qualities for different wall thicknesses to be rolled and stretching effects and which is moreover stable in respect of temperature, provides constant rolling results upon a change in the wall thickness and/or the quality of steel and does not lead to unwanted cementation of the rolled material, the high-temperature lubricant according to the invention contains at least the following constituents in percent by weight with respect to the solids content: (a) 40 to 90% by weight graphite, (b) 2 to 50% by weight organic blowing agent, and (c) 5 to 50% by weight inorganic separation agent, wherein the organic blowing agent (b) is selected from the group consisting of melamine, melam, melem, melon, phosphate salts and polyphosphate salts of the aforesaid compounds with phosphate chain lengths in the region of n=1 to 1000, reaction products and adducts of the aforesaid compounds with cyanuric acid or isocyanuric acid, and mixtures of the aforesaid, and the inorganic separation agent (c) is a sheet silicate or a mixture of sheet silicates.
Abstract:
Engines equipped with an exhaust line fitted with a particulate filter, in which the particulates contained in the exhaust gas are trapped on such filter, and wherein the trapped particulates are periodically burned off, are operated by improvedly catalyzing the combustion of said particles utilizing a composition containing mixture of a lubricating oil and a colloidal dispersion as the engine-lubricating composition, which dispersion includes particles of at least one compound of at least one rare earth and an amphiphilic agent.
Abstract:
A tubular threaded element including a dry protective coating. The coating includes a solid matrix adhering to the substrate in which are dispersed particles of solid lubricants from at least two classes that are selected to exert a synergistic effect between themselves and with the constituents of the matrix, i.e. coating provides protection against corrosion and against galling of the threadings of threaded elements used in hydrocarbon wells.
Abstract:
Artifacts, methods of creating such artifacts and methods of using such artifacts are provided. In this regard, an exemplary embodiment of a method for creating an artifact for quantifying measurement accuracy of non-contact sensors included in optical three-dimensional (3-D) measuring systems, comprises: fabricating an artifact using a base material; and coating the artifact with an approximately uniform coating of dry film lubricant.
Abstract:
A double-layer lubrication coating composition is made up of an upper-layer coating composition and a lower-layer coating composition. The upper-layer coating composition is made up of 50 to 70 wt % of an epoxy resin or a polyamide-imide resin, 5 to 20 wt % of boron nitride, and 15 to 30 wt % of silicone nitride or alumina. The lower-layer coating composition is made up of 50 to 70 wt % of an epoxy resin or a polyamide-imide resin, 15 to 30 wt % of polytetrafluoroethylene and 5 to 20 wt % of molybdenum disulfide and may include graphite as required.