Abstract:
Systems and methods are provided for sample processing. A device may be provided, capable of receiving the sample, and performing one or more of a sample preparation, sample assay, and detection step. The device may be capable of performing multiple assays. The device may comprise one or more modules that may be capable of performing one or more of a sample preparation, sample assay, and detection step. The device may be capable of performing the steps using a small volume of sample.
Abstract:
Systems and methods are provided for sample processing. A device may be provided, capable of receiving the sample, and performing one or more of a sample preparation, sample assay, and detection step. The device may be capable of performing multiple assays. The device may comprise one or more modules that may be capable of performing one or more of a sample preparation, sample assay, and detection step. The device may be capable of performing the steps using a small volume of sample.
Abstract:
A system for conducting an assay comprises a power source (16), a controller (13) for controlling the assay and a plurality of assay units (14) operatively connected to one another such that the controller can communicate with the assay units and the system is capable of conducting the assay. An assay device comprises a substantially circular body (24) having a plurality of chambers in fluid connection such that fluid can pass between said chambers and a central hub (200) having a sample inlet (202) disposed therein for receiving a sample.
Abstract:
Systems and methods are provided for sample processing. A device may be provided, capable of receiving the sample, and performing one or more of a sample preparation, sample assay, and detection step. The device may be capable of performing multiple assays. The device may comprise one or more modules that may be capable of performing one or more of a sample preparation, sample assay, and detection step. The device may be capable of performing the steps using a small volume of sample.
Abstract:
A process analysis unit includes a base module and an exchangeable cartridge module. The base module comprises at least one independent pump drive, and an analyte sensor without a fluidic measuring section. The cartridge module comprises a liquid reservoir tank, a sample taking device, at least one drive-less pump mechanism configured as a peristaltic membrane pump, a fluidic measuring section for the analyte sensor, and a plastic material plate with groove-like microfluidic channels configured to connect the liquid reservoir tank, the at least one drive-less pump mechanism, and a measuring section. The drive-less pump mechanism is driven pneumatically and pumps a liquid from the liquid reservoir tank. When the cartridge module is connected to the base module, the at least one drive-less pump mechanism is connected to and is driven by the at least one independent pump drive, and the fluidic measuring section is connected to the analyte sensor.
Abstract:
The invention relates to means for the examination of a sample, wherein a first input light beam (L1) is totally internally reflected at a detection surface of a sample chamber (111), while a second input light beam (L1′) is transmitted through the sample chamber (111). The resulting first and second output light beams (L2, L2′) are detected and can be evaluated with respect to frustrated total internal reflection and optical absorbance, respectively. Preferably, both output light beams (L2, L2′) are detected by a single image sensor (155).
Abstract:
An apparatus for analysis of a sample and in particular of a biological sample. The apparatus contains a microfluidic chip with dies, adapted to be selectively activated or deactivated by presence of target molecules in the biological sample. The apparatus further contains a light source to emit light for illumination of the microfluidic chip and an optical filter to allow passage of the light from the dies once activated or deactivated by the presence of the target molecules. A method for pressurizing a microfluidic chip is also disclosed, where a chamber is provided, the chamber is connected with the microfluidic chip and pressure is applied to the chamber.
Abstract:
A cartridge and cartridge system for use in an apparatus for analyzing a sample are provided. The system has a plurality of cartridges for different applications for a multimode instrument. The cartridges are removably engaged with a cartridge support of the apparatus in a “plug-in” format such that one cartridge may be removed from the apparatus and another cartridge may be easily installed. The cartridge support includes a plurality of cartridge positions that receive cartridges concurrently. One of the cartridges may be a luminescence cartridge that includes an integrated detector that is movable toward and away from a sample carrier of the apparatus, and thus toward and away from a sample located at the sample carrier.
Abstract:
An TDLS gas sensor with a measuring pick-up to be arranged outside of the interior chamber of an incubator or a climate chamber of similar design, and with an absorption pick-up to be arranged inside the interior chamber, and also with a window separating the measuring area and absorption area for the atmospheric separation of the laser diode from the interior chamber of the incubator, with the window being arranged at an angle to the axis of the laser beam emitted by a laser diode, and with the optronic components being arranged in a block of material in the measuring pick-up, said block being made of thermally well-conducting material and serving as heat sink, and with a heating system for the window in the measuring pick-up. The TDLS gas sensor is easy to install and remove and permits the measurement of moisture and of the carbon dioxide concentration in one measuring cycle. However, it does not need to be removed for the sterilization. By installing an additional laser diode for measuring oxygen, the TDLS gas sensor can be used to perform a wide bandwidth of measurements. In addition, the invention concerns a process for measuring the moisture and the carbon dioxide concentration.
Abstract:
Self-aligning light source and detector assembly having a sensor support mounted in a predetermined, fixed position, a light source holder mounted in a predetermined, fixed position relative to the sensor support, a sensor mounted in a fixed position on the sensor support, and a lamp assembly removably mounted to the light source holder in a predetermined position defined by mating surfaces which engage each other and seat the lamp assembly in the predetermined position whenever the lamp assembly is installed in the holder.