Abstract:
An apparatus for quantitatively detecting isotopologue of carbon dioxide using dual-photon absorption, comprising a laser source, a laser frequency stabilizer, a sample chamber, a signal detector, and a signal analyzer. The sample chamber comprises an optical resonator and a piezoelectric ceramic. The laser source is configured to output a laser beam. The laser frequency stabilizer is configured to lock the laser beam to a mode frequency of the optical resonator. The piezoelectric ceramic is configured to adjust a length of the optical resonator to alter the mode frequency of the optical resonator to match energy levels of a target molecular isotopologue. The signal detector is configured to detect a transmission intensity of the light beam passing the optical resonator to obtain a dual-photon absorption signal. The signal analyzer is configured to analyze and process the dual-photon absorption signal to obtain a concentration of the target molecular isotopologue.
Abstract:
A multi-channel measurement device for measuring properties of human tissue, may comprise a microcontroller and first and second source/sensor complexes. The first source/sensor complex may include a first housing having a first measurement portion, a first light sensor coupled to the microcontroller and exposed to the first measurement portion, and a first plurality of light sources coupled to the microcontroller and exposed to the first measurement portion. The second source/sensor complex may include a second housing having a second measurement portion, a second light sensor coupled to the microcontroller and exposed to the second measurement portion, and a second plurality of light sources coupled to the microcontroller and exposed to the second measurement portion. The first and second source/sensor complexes are coupled to each other such that the first measurement portion is opposite the second measurement portion and human tissue may be placed between the first and second measurement portions. The microprocessor is configured with instructions stored in non-volatile memory to individually activate each of the light sources of the first and second pluralities of light sources and to record light intensity detected by the first and second light sources while an individual light source is activated. Each combination of an individually activated light source and one of the first and second light sensors provides a distinct measurement channel for measuring the absorption spectra of human blood and tissue.
Abstract:
A method for determining a chance to enable a zeroing of gas analysis is disclosed herein. The method includes emitting radiation, and receiving emitted radiation, the received radiation comprising a first wavelength range absorbed by the at least one desired gas component and one or more disturbing factor, and a second wavelength range absorbed by the disturbing factor, the first wavelength range differing from the second wavelength range. The method also includes providing to a processing unit a first signal data indicative of a concentration of the at least one desired gas component and absorption of the disturbing factor, and a second signal data indicative of absorption of the disturbing factor. The method also includes determining a stability of the first and second signal data as a function of time, and if they are substantially stable enabling the zeroing to improve a measurement accuracy.
Abstract:
Techniques for optical detection of target chemicals on/in samples are disclosed. Light of at least two different wavelengths, or different bands of wavelengths, interacts with a target chemical, and at least some of the light that has interacted with the target chemical is incident on at least two photodetectors. Each of the photodetectors is configured to detect light of a different wavelength, or a different band of wavelengths, that has interacted with the target chemical. A processing logic is configured to compute a ratio between a parameter indicative of the intensity of light detected by one photodetector and a parameter indicative of the intensity of light detected by the other photodetector, and to determine the presence and/or the amount of the target chemical based on the computed ratio. In this manner, a simple, compact, and non-contact optical measurement assembly for assessing chemical content using differential spectral measurements may be provided.
Abstract:
A method of spatially and spectrally calibrating a spectrophotometer including: a) emitting a white light illumination output from a full width illumination source; b) illuminating a test patch with the white light illumination output; c) reflecting a portion of the white light illumination output from the test patch to form a white light reflected illumination output; d) receiving the white light reflected illumination output at first, second and third rows of photosensitive elements to form a first calibration data set; e) emitting a cyan light illumination output from the full width illumination source; f) illuminating the test patch with the cyan light illumination output; g) reflecting a portion of the cyan light illumination output from the test patch to form a cyan light reflected illumination output; and, h) receiving the cyan light reflected illumination output at the second and third rows of photosensitive elements to form a second calibration data set.
Abstract:
A method for determining the temperature of an infrared-active gas by means of infrared spectroscopy is provided. The method comprising: radiating infrared light in a spectral range of 700 cm−1 to 5000 cm−1 originating from an infrared light source onto the gas; obtaining a first absorption-related parameter originating from measuring a first infrared absorption band of the gas, wherein the first infrared absorption band is a hot band being caused by thermal population of at least one vibrational mode of the gas; obtaining a second absorption-related parameter originating from measuring a second infrared absorption band of the gas, and calculating a ratio between the first absorption-related parameter and the second absorption-related parameter. The method is characterized in that the ratio is used to determine the temperature of the gas, wherein the ratio has a relative change of at least 0.5% per Kelvin temperature difference of the gas.
Abstract:
A spectrophotometer optics system is provided. The spectrophotometer optics system includes an optical sensing array and an optical waveguide including an input side and an output side. The input side of the optical waveguide receives input light and the optical sensing array is located at the output side of optical waveguide. The optical waveguide is configured to carry light to be analyzed by total internal reflection to the output side of the optical waveguide and to direct the light to be analyzed toward the optical sensing array. The spectrophotometer optics system includes an optical dispersive element configured to separate the light to be analyzed into separate wavelength components, and the optical dispersive element is supported by the optical waveguide.
Abstract:
An optical sensor device includes a light emitter for emitting, to a living body, lights having two wavelengths and blinking at a predetermined frequency, and a light receiver for receiving the lights from the living body. The light receiver outputs first and second detection signals corresponding to the respective wavelengths. A filter circuit extracts, from the first and second detection signals, modulation signals that are obtained with amplitude modulation of signals of the predetermined frequency. The modulation signals are amplified by a post-amplifier and are taken into an arithmetic processing unit after being converted to digital signals by an AD converter. The arithmetic processing unit calculates DC components and AC components of the first and second detection signals by employing the modulation signals converted the digital signals.
Abstract:
An optical absorption spectrometry system includes first and second light sources, a dichroic beam combiner and a wavelength selective module. The first light source emits first light having first wavelengths within a first wavelength range, and the second light source emits second light having second wavelengths within a second wavelength range different from the first wavelength range. The dichroic beam combiner includes a predetermined first reflectance/transmission transition region, the dichroic beam combiner being configured to transmit a first portion of the first light and to reflect a second portion of the second light to provide combined light. The wavelength selective module is configured to disperse the combined light received at an entrance aperture, to select a sample wavelength range of the dispersed light as sample light, and to output the sample light having the selected sample wavelength range from an exit aperture for illuminating a sample.
Abstract:
Spectroscopy apparatuses oriented to the critical angle of the sample are described that detecting the spectral characteristics of a sample wherein the apparatus consists of an electromagnetic radiation source adapted to excite a sample with electromagnetic radiation introduced to the sample at a location at an angle of incidence at or near a critical angle of the sample; a transmitting crystal in communication with the electromagnetic radiation source and the sample, the transmitting crystal having a high refractive index adapted to reflect the electromagnetic radiation internally; a reflector adapted to introduce the electromagnetic radiation to the sample at or near an angle of incidence near the critical angle between the transmitting crystal and sample; and a detector for detecting the electromagnetic radiation from the sample. Also, provided herein are methods, systems, and kits incorporating the peri-critical reflection spectroscopy apparatus.