Abstract:
A method of fabricating a gas sensor on a substrate and a gas sensor fabricated on a substrate that includes optical and electronic components are described. The method includes fabricating a laser to output light over a range of wavelengths within a waveguide, fabricating a splitter to split the light output by the laser to a reference waveguide and to a detection waveguide, fabricating a reference cell to house the reference waveguide and a reference gas. An output of the reference waveguide is coupled to a first optical detector and an output of the detection waveguide is coupled to a second optical detector to identify or quantify an ambient gas.
Abstract:
An inspection system that may include an illumination module that may be configured to scan a sample during multiple scan iterations; wherein during each scan iteration the illumination module scans each beam of a plurality of spaced apart beams along a scan line; a mechanical stage that may be configured to move the sample during the multiple scan iterations; a detection module; and a processor; wherein when the inspection system operates in an interlaced mode, the mechanical stage may be configured to move at a first speed thereby preventing a substantial overlap between scan lines obtained during the multiple scan iterations; wherein when the inspection system operates in a non-interlaced mode: the mechanical stage may be configured to move at a second speed that differs from the first speed thereby introducing an overlap between scan lines of different beams that may be obtained during different scan iterations; the detection module may be configured to generate detection signals in response to a detection of radiation emitted from the sample as a result of each scan line; and wherein the processor may be configured to independently process detection signals relating to different scan lines.
Abstract:
In an optical-based sample analysis, for example fluorescence-based or absorbance-based measurement, a selection is made between a first excitation light path and a second excitation light path. The first excitation light path directs excitation light from a light source, through an excitation monochromator, through an excitation filter, and to a sample. The second excitation light path directs excitation light from the light source, through the excitation filter, and to the sample while bypassing the excitation monochromator. Excitation light generated by the light source is transmitted along either the first excitation light path or the second excitation light path in accordance with the selection made, thereby irradiating the sample. In response the sample produces emission light (transmitted light in the case of absorbance measurements), which is transmitted to and measured by a light detector.
Abstract:
A method is provided for inspecting the surface of an object such as a wafer having tridimensional structures, using a confocal chromatic device with a plurality of optical measurement channels and a chromatic lens allowing optical wavelengths of a broadband light source to be focused at different axial distances defining a chromatic measurement range. The method includes a step of obtaining an intensity information corresponding to the intensity of the light actually focused on an interface of the object within the chromatic measurement range at a plurality of measurement points on the object by measuring a total intensity over the full spectrum of the light collected by at least some of the optical measurement channels in a confocal configuration.
Abstract:
A confocal chromatic device is provided, including at least one chromatic lens with an extended axial chromatism; at least one broadband light source; at least one optical detector; and at least one measurement channel with a planar Y-junction made with a planar waveguide optics technology, and arranged for transferring light from the at least one light source towards the at least one chromatic lens and for transferring light reflected back through the at least one chromatic lens towards the at least one optical detector.
Abstract:
An adhering detection apparatus includes a light source to emit probe light to a light translucent object during an emission period, and to stop an emission of the probe light to the light translucent object during a non-emission period, a light receiver to receive light coming from the light translucent object during the emission period and the non-emission period of the light source, and an adhering detection processor to perform an adhering detection processing for detecting a substance adhering to the light translucent object based on light quantity of the light coming from the light translucent object and received by the light receiver, and to output a detection result of the adhering detection processing. The adhering detection processor selectively performs one or more processes depending on the light quantity of the light received by the light receiver during the non-emission period of the light source.
Abstract:
According to one embodiment, a defect inspection device includes a first beam splitter configured to branch light into a first optical path and a second optical path, a first optical system on the first optical path, a second optical system on the second optical path, a first aperture configured to form an illumination field of an inspection sample by light from the first optical system, a second aperture configured to form an illumination field of the inspection sample by light from the second optical system, and a third optical system configured to illuminate, with a first illumination, an image of the first aperture on a first area of the inspection sample, and to illuminate, with a second illumination, an image of the second aperture on a second area of the inspection sample.
Abstract:
Technologies are generally described for operating and manufacturing optomechanical accelerometers. In some examples, an optomechanical accelerometer device is described that uses a cavity resonant displacement sensor based on a zipper photonic crystal nano-cavity to measure the displacement of an integrated test mass generated by acceleration applied to the chip. The cavity-resonant sensor may be fully integrated on-chip and exhibit an enhanced displacement resolution due to its strong optomechanical coupling. The accelerometer structure may be fabricated in a silicon nitride thin film and constitute a rectangular test mass flexibly suspended on high aspect ratio inorganic nitride nano-tethers under high tensile stress. By increasing the mechanical Q-factors through adjustment of tether width and tether length, the noise-equivalent acceleration (NEA) may be reduced, while maintaining a large operation bandwidth. The mechanical Q-factor may be improved with thinner (e.g.,
Abstract:
A method of fabricating a gas sensor on a substrate and a gas sensor fabricated on a substrate that includes optical and electronic components are described. The method includes fabricating a laser to output light over a range of wavelengths within a waveguide, fabricating a splitter to split the light output by the laser to a reference waveguide and to a detection waveguide, fabricating a reference cell to house the reference waveguide and a reference gas. An output of the reference waveguide is coupled to a first optical detector and an output of the detection waveguide is coupled to a second optical detector to identify or quantify an ambient gas.
Abstract:
A structured illumination device includes: a diffraction unit that diffracts light beams of a plurality of wavelengths that are emitted simultaneously or sequentially by a light source into a plurality of diffracted beams; and an optical system that forms interference fringes on a surface of a sample using the plurality of diffracted beams diffracted by the diffraction unit, the optical system including a first optical system and a second optical system that focuses the plurality of diffracted beams at positions on or near a pupil plane of the first optical system, and a magnification characteristic dY(λ) of the second optical system satisfying the condition of (fo·nw−afλ/P)≦dY(λ)≦(fo·NA−afλ/P), where a=1 (for M=1, 2) or a=2 (for M=3).