Abstract:
An integrated circuit includes a photodetection region configured to receive incident photons. The photodetection region is configured to produce a plurality of charge carriers in response to the incident photons. The integrated circuit also includes at least one charge carrier storage region. The integrated circuit also includes a charge carrier segregation structure configured to selectively direct charge carriers of the plurality of charge carriers into the at least one charge carrier storage region based upon times at which the charge carriers are produced.
Abstract:
A pulsed light synchronizer synchronizes a first pulsed light having a first period and a second pulsed light and having a second period equal to the first period with each other. A third pulsed light is acquired by providing a first delay time between two pulsed lights acquired by dividing the first pulsed light, and by multiplexing the pulsed lights acquired from the first pulsed light. A fourth pulsed light is acquired by providing a second delay time between two pulsed lights acquired by dividing the second pulsed light, and by multiplexing the pulsed lights acquired from the second pulsed light. The pulsed light synchronizer detects, through a detector, a pulsed light acquired by multiplexing the third and fourth pulsed lights, and adjusts at least one of the first and second periods based on a timing difference between the third and fourth pulsed lights acquired from the detector.
Abstract:
Systems and methods for analysis of samples, and in certain embodiments, microfluidic sample analyzers configured to receive a cassette containing a sample therein to perform an analysis of the sample are described. The microfluidic sample analyzers may be used to control fluid flow, mixing, and sample analysis in a variety of microfluidic systems such as microfluidic point-of-care diagnostic platforms. Advantageously, the microfluidic sample analyzers may be, in some embodiments, inexpensive, reduced in size compared to conventional bench top systems, and simple to use. Cassettes that can operate with the sample analyzers are also described.
Abstract:
The present invention relates to an information obtaining apparatus that obtains information of a sample, the information obtaining apparatus including an irradiation unit configured to irradiate the sample with a terahertz wave, a detection unit configured to detect the terahertz wave reflected by the sample, a spectrum obtaining unit configured to obtain a spectrum from a temporal waveform obtained by using a detection result of the detection unit, an angle information obtaining unit configured to obtain information related to an incident angle of the terahertz wave from the irradiation unit with respect to the sample by using the spectrum, and a control unit configured to adjust the incident angle by referring to the information related to the incident angle.
Abstract:
Provided are a Raman signal measuring method and apparatus which use a difference in a time scale between Raman scattered light and fluorescence. Thus, after exciting light is incident upon a target object, light scattered from the target object may be detected before the target object generates fluorescence in response to the exciting light. As a result, a Raman signal in which background fluorescence is reduced may be obtained.
Abstract:
To increase the illumination efficiency by facilitating the change of the incident angle of illumination light with a narrow illumination width according to an inspection object and enabling an illumination region to be effectively irradiated with light, provided is a defect inspection method for obliquely irradiating a sample mounted on a table that is moving continuously in one direction with illumination light, collecting scattered light from the sample obliquely irradiated with the illumination light, detecting an image of the surface of the sample formed by the scattered light, processing a signal obtained by detecting the image formed by the scattered light, and extracting a defect candidate, wherein the oblique irradiation of the light is implemented by linearly collecting light emitted from a light source, and obliquely projecting the collected light onto the surface of the sample, thereby illuminating a linear region on the surface of the sample.
Abstract:
An integrated circuit includes a photodetection region configured to receive incident photons. The photodetection region is configured to produce a plurality of charge carriers in response to the incident photons. The integrated circuit also includes at least one charge carrier storage region. The integrated circuit also includes a charge carrier segregation structure configured to selectively direct charge carriers of the plurality of charge carriers into the at least one charge carrier storage region based upon times at which the charge carriers are produced.
Abstract:
A method for optical detection of residual soil on articles (such as medical instruments and equipment), after completion of a washing or a rinsing operation by a washer. A soil detection system provides an indication of soil on the articles by detecting luminescent radiation emanating from the soil in the presence of ambient light.
Abstract:
A pulse multiplier includes a polarizing beam splitter, a wave plate, and a set of multi-surface reflecting components (e.g., one or more etalons and one or more mirrors). The polarizing beam splitter passes input laser pulses through the wave plate to the multi-surface reflecting components, which reflect portions of each input laser pulse back through the wave plate to the polarizing beam splitter. The polarizing beam splitter reflects each reflected portion to form an output of the pulse multiplier. The multi-surface reflecting components are configured such that the output pulses exiting the pulse multiplier have an output repetition pulse frequency rate that is at least double the input repetition pulse frequency.
Abstract:
The invention encompasses analyzers and analyzer systems that include a single molecule analyzer, methods of using the analyzer and analyzer systems to analyze samples, either for single molecules or for molecular complexes. The single molecule uses electromagnetic radiation that is translated through the sample to detect the presence or absence of a single molecule. The single molecule analyzer provided herein is useful for diagnostics because the analyzer detects single molecules with zero carryover between samples.