Abstract:
A phantom design method includes a correction step and a calculation step. In the correction step, an absorption spectrum of a target of spectroscopic measurement by a near infrared spectrometer is corrected based on a refractive index of the target and a refractive index of a resin used as a base material of a phantom to generate a corrected absorption spectrum. In the calculation step, based on an absorption spectrum of the resin and an absorption spectrum of each of N types of dyes, a concentration of each of the N types of dyes to be contained in the base material is calculated such that an absorption spectrum of the phantom constituted by the base material containing the N types of dyes approximates the corrected absorption spectrum in a predetermined wavelength range of a near infrared region.
Abstract:
An optical environment oscillation detection system and an optical measurement method using the same are provided. This system includes a laser light source, a polarizer, a liquid crystal (LC) element, an analyzer, and an optical sensor arranged in sequence. A polarization axis of the polarizer and that of the analyzer are respectively parallel to a first and a second axis direction being perpendicular to each other. When there is no environmental disturbance, the alignment of LC cells in the LC element has an original pretilt angle, and the optical sensor senses a first scattered light intensity of the laser beam outputted from the analyzer. When there is environmental disturbance, the alignment of the LC cells has a changed pretilt angle in relative to the original pretilt angle, and the optical sensor senses a second scattered light intensity of the laser beam outputted from the analyzer.
Abstract:
A method and device for linearizing an optical sensor in a dialysis apparatus. The method includes introducing a sensor to the dialysate-side drain line, determining the linear range of the optical sensor, backwards extrapolating the data from the linear range and correcting the data from the non-linear range.
Abstract:
This disclosure relates generally to a sampling device, and more particularly, a sampling device that facilitates spectroscopic measurements with a variable path length and the necessary software controlled algorithms and methods for such a device.
Abstract:
An image processing apparatus includes: an interface unit configured to input an image signal from an imaging apparatus that exposes a specimen dyed with a fluorescent dye to excitation light and images fluorescence by a color imaging element; and a color correction circuit configured to retain information on a percentage of each of a component of a second color and a component of a third color with respect to a component of a first color corresponding to the excitation light in the image signal, which is determined in advance based on color filter spectral characteristics of the color imaging element, and reduce each of an amount corresponding to the percentage of the component of the second color and an amount corresponding to the percentage of the component of the third color from the input image signal.
Abstract:
A system for obtaining a measurement of a species of interest. The system includes one or more reference regions, a sensor region, an exciter unit, a detector unit and a processing unit. The exciter unit exposes first and second chemical transducers in the reference and sensor regions, respectively, to an excitation light while they are exposed to reference environments and an analyte, respectively. The detector unit measures responses of the first and the second chemical transducers to the excitation light. The processing unit determines a compensation for aging of the first chemical transducer from a discrepancy between the measurements of the responses of the first chemical transducer and reference responses. The processing unit applies the compensation for aging to the measurement of the response of the second chemical transducer to obtain the measurement of the species of interest in the analyte.
Abstract:
A system and method for characterizing contributions to signal noise associated with charge-coupled devices adapted for use in biological analysis. Dark current contribution, readout offset contribution, photo response non-uniformity, and spurious charge contribution can be determined by the methods of the present teachings and used for signal correction by systems of the present teachings.
Abstract:
An automatic focus control apparatus includes a light detector, which receives light reflected by a surface of a wafer and generates a light reception signal based on the received signal, a controller, which generates a driving signal, the driving signal being one of a first signal and a second signal, the driving signal indicating whether to perform automatic focus control based on the light reception signal, a focus error corrector, which generates a focus error correction signal based on the driving signal, and a stage driver, which displaces a wafer stage supporting the wafer by adjusting the z-axis position of the wafer stage based on the focus error correcting signal if the driving signal is the first signal, and maintains the z-axis position of the wafer stage based on the focus error correction signal if the driving signal is the second signal.
Abstract:
Methods and apparatus are provided for determining weight percent of solids in a suspension using Raman spectroscopy. The methods can be utilized to acquire Raman spectral data from the suspension and to determine weight percent of solids in a process being carried out, for example, in a vessel, without the need to remove samples for analysis. The weight percent of the solids can be determined with a desired accuracy in a relatively short time, typically 10 minutes or less. The acquired Raman spectral data may be processed by chemometric software using, for example, a partial least squares algorithm and data pretreatment to provide a predicted value of weight percent solids. In some embodiments, the invention is used to determine the weight percent of microparticles of a diketopiperazine in an aqueous solution.
Abstract:
The invention relates to a method for correcting an optical signal produced by a sample comprising the following steps: illuminating a surface of the sample by a first light beam, produced by a first light source, the said first light source being coupled to a first optical system, focusing the said first light beam in an object focal plane of the first optical system, the said object focal plane being situated, in the sample, at a measuring depth z from the surface of the sample; measuring, with a first photodetector, of a first optical signal backscattered by the sample in response to the first light beam, the first photodetector producing a first measured signal representative of the said first optical signal, a spatial filter being interposed between the first optical system and the first photodetector, the spatial filter comprising a window which transmits the said first optical signal towards the said first photodetector, the window being disposed in a conjugate focal plane of the object focal plane of the first optical system; wherein the method also comprises the following steps: determining an optical scattering property of the sample; applying a correction function to the first measured signal so as to generate a first corrected signal, the said correction function taking into account the said optical scattering property.