Abstract:
The invention is related to methods and apparatus that use a visual sensor and dead reckoning sensors to process Simultaneous Localization and Mapping (SLAM). These techniques can be used in robot navigation. Advantageously, such visual techniques can be used to autonomously generate and update a map. Unlike with laser rangefinders, the visual techniques are economically practical in a wide range of applications and can be used in relatively dynamic environments, such as environments in which people move. One embodiment further advantageously uses multiple particles to maintain multiple hypotheses with respect to localization and mapping. Further advantageously, one embodiment maintains the particles in a relatively computationally-efficient manner, thereby permitting the SLAM processes to be performed in software using relatively inexpensive microprocessor-based computer systems.
Abstract:
A mobile robot guest for interacting with a human resident performs a room-traversing search procedure prior to interacting with the resident, and may verbally query whether the resident being sought is present. Upon finding the resident, the mobile robot may facilitate a teleconferencing session with a remote third party, or interact with the resident in a number of ways. For example, the robot may carry on a dialogue with the resident, reinforce compliance with medication or other schedules, etc. In addition, the robot incorporates safety features for preventing collisions with the resident; and the robot may audibly announce and/or visibly indicate its presence in order to avoid becoming a dangerous obstacle. Furthermore, the mobile robot behaves in accordance with an integral privacy policy, such that any sensor recording or transmission must be approved by the resident.
Abstract:
A system for the nondestructive evaluation of aircraft comprising a plurality of positional transmitters forming a perimeter around a test airplane and an inspection station within the perimeter. The inspection station includes a moveable cart, a nondestructive testing device coupled the cart, and a computer coupled to the cart and nondestructive testing device. The computer configured to receive aircraft positional data from positional receivers mounted on an aircraft and overlay a model of the aircraft on the received aircraft positional data to determine a coordinate system for the aircraft. The computer is further operable to determine the location of the cart from data received from onboard positional receivers, the location of the cart referenced to the coordinate system for the aircraft.
Abstract:
The invention is related to methods and apparatus that use a visual sensor and dead reckoning sensors to process Simultaneous Localization and Mapping (SLAM). These techniques can be used in robot navigation. Advantageously, such visual techniques can be used to autonomously generate and update a map. Unlike with laser rangefinders, the visual techniques are economically practical in a wide range of applications and can be used in relatively dynamic environments, such as environments in which people move. One embodiment further advantageously uses multiple particles to maintain multiple hypotheses with respect to localization and mapping. Further advantageously, one embodiment maintains the particles in a relatively computationally-efficient manner, thereby permitting the SLAM processes to be performed in software using relatively inexpensive microprocessor-based computer systems.
Abstract:
A robotic system has a drive chassis having a drive motor and a drive element attached to the first drive motor, Additionally, a motor controller system provides drive signals to the first drive motor. A logic controller provides control signals to the motor controller. A network system is provided for communicating with the logic controller. At least one peripheral element communicates with the network system. There is additionally provided a wireless arrangement for communicating wirelessly with the network system.
Abstract:
A self-running robot tracking and imaging a human body with an inexpensive arrangement includes: first to fourth sensors; a camera; a driving device moving the first to fourth sensors and camera simultaneously; a rotary encoder detecting that the first to fourth sensors and camera have stopped; a control unit which, upon detection of a heat source by one of the first to fourth sensors, controls the driving device such that the camera turns to the direction which the sensor detecting the heat source faced, and controls the camera so as to image an object after the camera has stopped, and controls the driving device such that the first to fourth sensors remain stationary for 3 seconds after the camera has stopped irrespective of whether a heat source is detected.
Abstract:
The invention relates to a method for navigating within a navigation area (2), wherein a plurality of navigation tags (1) have been mounted at predetermined positions within the navigation area (2). To solve the object of the invention to provide a method and system for accurate and flexible navigating in various types of navigation scenarios, the method comprises the steps of: determining a sequence of navigation tags (1), which are associated with a desired route within the navigation area (2), based on the positions of the navigation tags (7) and on topographic information (8) on the navigation area (2); and navigating the route by passing navigation tags (1) of the sequence of navigation tags, whereby passing of a navigation tag is acknowledged (12, 13). The invention further relates to a system and a computer program product for navigating within a navigation area (2).
Abstract:
A mobile sensor being movable which includes a wireless transmitting/receiving part to wirelessly transmit/receive information, an indoor environmental sensor to sense the indoor environment, and a controller to transmit the information on the indoor environment sensed by the indoor environmental sensor through the wireless transmitting/receiving part, and a control server receiving the information transmitted from the mobile sensor so as to control an indoor environmental control device on the basis of the received information. Therefore, the present invention provides a mobile sensor, which can optimize indoor environments through a home network.
Abstract:
Robotic systems for modeling, mapping and exploring subterranean void spaces such as mines, caves, tunnels, bunkers, and conduits. Robotic modeling of subterranean voids is generally enabled by a procedural system consisting of preprocessing, ingress, void modeling, mapping and navigation, exploration, conveying payloads other than void modeling sensors, egress, and post processing. The robots can either be imposed mobility or can be self mobile with either autonomous, remote, teleoperated, or manual modes of operation. The robot may optionally transform from a compact size into a more conventional operating size if the operating size exceeds the void entry opening size. Void geometries with flat floors are amenable to robot locomotion such as rolling, crawling, walking or swimming. Alternatively, irregular floor geometries that preclude self mobilization may be accessible by imposed mobilization such as dropping or pushing a movable robotic sensor into such voids. The robotic device is preferably adaptable to voids filled with a gas or liquid. To maximize mapping applicability, the robot optionally includes sensing, locomotion and environmental tolerance to submersion and safeguarding, according to use criteria.
Abstract:
A system and method are described that use impulse radio technology to enhance the capabilities of a robot. In one embodiment, a system, a robot and a method are provided that use the communication capabilities of impulse radio technology to help a control station better control the actions of the robot. In another embodiment, a system, a robot and a method are provided that use the communication, position and/or radar capabilities of impulse radio technology to help a control station better control the actions of a robot in order to, for example, monitor and control the environment within a building.