Abstract:
The present invention is directed toward a system and process that controls a group of networked electronic components using a multimodal integration scheme in which inputs from a speech recognition subsystem, gesture recognition subsystem employing a wireless pointing device and pointing analysis subsystem also employing the pointing device, are combined to determine what component a user wants to control and what control action is desired. In this multimodal integration scheme, the desired action concerning an electronic component is decomposed into a command and a referent pair. The referent can be identified using the pointing device to identify the component by pointing at the component or an object associated with it, by using speech recognition, or both. The command may be specified by pressing a button on the pointing device, by a gesture performed with the pointing device, by a speech recognition event, or by any combination of these inputs.
Abstract:
Status indication of a device to be controlled in a building automation system; including functionalities and/or devices for recognizing a command signal that has been sent from a controlling device to a device to be controlled; and, interpreting the state of the device to be controlled from the command signal.
Abstract:
The transmission means of a mobile apparatus converts a response signal into binary data, modulates a carrier wave with a digital signal obtained through modulation by a plurality of pseudo-random codes corresponding to the binary data, and then transmits the response signal; the reception means of an in-vehicle apparatus evaluates the correlation of the received response signal by use of a plurality of correlators corresponding to the plurality of pseudo-random codes and demodulates the response signal, based on the outputs of the plurality of correlators; the transmission means of the in-vehicle apparatus retransmits an inquiry signal to the mobile apparatus when there has been outputs from the plurality of correlators within a predetermined time of the occurrence of the pseudo-random code.As a result, an in-vehicle apparatus remote control system can be provided in which the communication responsiveness can be enhanced and the reliability of communication is high, and that is small-sized, inexpensive, and suitable for preventing theft of a vehicle.
Abstract:
A mobile, remotely controlled robot includes a turret subsystem, a robot controller subsystem configured to control the robot, control the turret, and fire the weapon, a robot navigation subsystem configured to determine the position of the robot, a turret orientation determination subsystem, and a robot communications subsystem for receiving commands and for transmitting robot position data and turret orientation data. An operator control unit includes a user interface for commanding the robot, the turret, and the weapon. An operator control unit communications subsystem transmits commands to the robot and receives robot position data and turret orientation data from the robot. An operator control unit navigation subsystem is configured to determine the position of the operator control unit. An operator control unit controller subsystem is responsive to the robot position data, the turret orientation data, and the operator control unit position and is configured to determine if the weapon is aimed at the operator control unit within a predetermined fan angle.
Abstract:
A wireless communication system comprises one or more control units operable to transmit control signals, a plurality of actuators responsive to the control signals, and a plurality of sensors operable to transmit sensor data used by the one or more control units in generating the control signals. Each of the sensors, actuators, and one or more control units are located at a fixed position in the system relative to one another. Each of the plurality of sensors and each of the plurality of actuators are coupled to at least one of the one or more control units via a plurality of wireless paths. Each of the plurality of sensors are operable to transmit the sensor data in an assigned time slot to at least one of the one or more control units over a plurality of wireless channels in each of the plurality of wireless paths. The number of channels in each of the plurality of wireless paths is determined based, at least in part, on a worst-case estimate of potential interference, and each of the plurality of sensors is operable to pseudo-randomly switch the plurality of channels over which the sensor data is transmitted.
Abstract:
A universal remote control apparatus, a system for controlling a universal remote control, and a method for the same, and more particularly, to a universal remote control apparatus, a system for controlling a universal remote control, and a method for the same, which includes batch instruction information having graphical user interface (GUI) components corresponding to status information of at least one device, and provides the GUI adapting mechanical properties of the device to a user.
Abstract:
Methods, systems, and products are disclosed for controlling an electronic device. A query is received at a remote control interface. A response to the query is determined. A random response interval of time is determined according/to a collision avoidance mechanism. When the random response interval of time expires, then the response to the query is sent.
Abstract:
A remote control transmitter and a controlled apparatus that are paired by a pairing process that remotely controls the controlled apparatus. The operator initially uses the remote control transmitter to control the controlled apparatus so that it performs a specified operation, the remote control transmitter transmits RF packet data that contains a master ID, control data, and a status code that indicates a pairing start via an RF signal, and the controlled apparatus that receives this RF signal transmits RF packet data that contains a slave ID, the master ID, and a status code that indicates pairing ACK back to the remote control transmitter via an RF signal. The controlled apparatus further performs an operation based on the control data included in the transmitted RF packet data.
Abstract:
Provided are a remote control system and method for controlling portable terminals. The remote control system includes a control terminal which is a portable terminal that performs a remote control operation, a target terminal which is a portable terminal that is subject to the remote control operation performed by the control terminal, and a remote control management server which determines whether the control terminal and the target terminal are heterogeneous, and if the two terminals are heterogeneous, converts messages respectively transmitted from the control terminal and the target terminal to a format conforming to corresponding receiving terminals.
Abstract:
The present embodiments provide methods, apparatuses, and systems that interface with automobile Engine Control Units (ECU). In some embodiments, methods are provided that communicate with an ECU by establishing a wireless communication link with a remote device, coupling with an ECU, pairing the remote device with the ECU, identifying a protocol to communicate with the ECU, and transferring communications between the remote device and the ECU.