Abstract:
An FED device includes an anode electrode formed on a substrate; a phosphor layer formed on the anode electrode; and field emission devices for emitting at least two electron beams onto the phosphor layer. An area where a fluorescent material is excited can be enlarged and luminance and efficiency of the FED can be enhanced.
Abstract:
An image display apparatus including a rear plate and a face plate disposed opposite to each other, the rear plate being equipped with a plurality of electron-emitting devices, each provided with a pair of electrodes and an electroconductive film including an electron-emitting region disposed between the electrodes, the face plate being equipped with a phosphor for displaying an image and a film exposed on a surface of the phosphor, the film comprising a metal or a metal compound material. A film comprising the same metal or the same metal compound material as the metal or the metal compound material constituting the film exposed on the surface of the phosphor is formed on each of the electroconductive films of the plurality of electron-emitting devices to have a thickness in a range from 0.2 nm to 4.5 nm.
Abstract:
An image formation apparatus is disclosed which includes, within an enclosure configured by a pair of substrates placed face to face and an external frame placed between the substrates, an electron source placed on one of the pair of substrates, an image formation material placed on the other substrate, and spacers placed between the substrates, characterized in that the spacers and the external frame is conductive and device is provided for electrically connecting the spacers and the external frame so that the equipotential surfaces between the spacers and the external frame are quasi-parallel when driven.
Abstract:
A method for manufacturing an electron emission element comprising, between its electrodes, a conductive film having an electron emission section. The method comprising the steps of forming a gap in the conductive film located between the electrodes, and applying a voltage between the electrodes in an atmosphere that has an aromatic compound with a polarity or a polar group and in which the partial pressure ratio of water to the aromatic compound is 100 or less.
Abstract:
As a method of manufacturing an electron emitter having a pair of element electrodes formed on a substrate, a conductive film connected to both of the element electrodes, and an electron emission section formed in part of the conductive film, the method includes discharging a droplet of a function liquid containing a material for forming the conductive film onto a discharge surface of the substrate by a droplet device to adhere a liquid-state object to at least part of an area in which the conductive film is to be formed, drying the liquid-state object so as to make the liquid-state object become the conductive film, and forming an electron emission section in the conductive film by applying an current between the pair of element electrodes, wherein if accompanied by the drying to form the conduct film, the discharging the liquid-state object in a shape having a constricted part for forming a latent image section that has a relatively thin film thickness in a portion for forming the electron emitter.
Abstract:
A slit forming process with respect to a coated film, includes: forming a step pattern having an end part on a substrate; coating a liquid material for forming a coated film on the substrate in the manner of covering at least the end part of the step pattern; and forming the coated film by drying the coated liquid material, together with forming a slit at a position corresponding to the end part of the step pattern.
Abstract:
To provide an antistatic film that requires low power consumption and provides satisfactory electric contact, as a measure for preventing an insulating substrate surface having an electronic device formed thereon from being charged. The electronic device includes: an insulating substrate; a conductor; and a resistance film connected with the conductor, the conductor and the resistance film being formed on the insulating substrate, characterized in that the resistance film has a larger thickness in a connection region with the conductor than a thickness in portions other than the connection region.
Abstract:
The invention is to provide a producing method for an electron emitting device of field emission type, having sufficient on/off characteristics and capable of efficient electron emission at a low voltage. There is provided a producing method for an electron emitting device including steps of preparing a plurality of electroconductive particles each covered with an insulation material having a thickness of 10 nm or less at least on a part of a surface of the particle, and forming a dipole layer on a surface of the insulation material covering each of the plurality of electroconductive particles.
Abstract:
A plurality of kinds of ink jet devices are used for different regions, respectively. For element electrode pairs arranged in the vicinity of the fixed position of a spacer for example, there is used an ink jet device having an excellent performance in drop placement accuracy, drop volume accuracy or the like. For the remaining element electrode pairs, there are used ink jet devices having an inferior performance. As a result, an electron source substrate of a high quality can be manufactured at a low cost and with a high throughput.
Abstract:
The invention provides an image forming apparatus in which orbit shift can be prevented to perform good image display in an electron beam emitted from the electron-emitting device adjacent to the spacer when an antistatic spacer coated with a high resistance film is used. A surface shape is controlled by forming a fine particle film on the surface of a row directional wiring 5 in which a spacer 3 is arranged, the electron emission is realized from electron-emitting areas 14a and 14b near contacting areas 15a and 15b in a non-contacting area 16 in which the spacer 3 is not in contact with the row directional wiring 5, and the non-contacting area 16 of the spacer 3 is irradiated with the electron to decrease a potential, which allows a good equipotential line 17 to be formed.