Abstract:
Disclosed is a portable X-ray generation device, which uses an electric field emission-type X-ray source, and is thus advantageous in reducing weight and volume and has excellent reliability in X-ray emission performance. The portable X-ray generation device according to the present invention comprises: an electric field emission X-ray source, which includes a cathode electrode having an electron emission source, an anode electrode having an X-ray target surface, and a gate electrode between the cathode electrode and the anode electrode; an X-ray emission cone, which has a cone shape having an increasing diameter toward the front thereof, is disposed in front of an X-ray emission point of the electric field emission X-ray source, and controls an emitted X-ray in the form of an X-ray beam having a predetermined angle range; and a driving signal generation unit for generating at least three driving signals applied to the cathode electrode, the anode electrode, and the gate electrode, respectively, by a direct current power source having a predetermined voltage, wherein the entire weight of the device is 0.8 kg to 3 kg, and the X-ray emission output thereof can be implemented to be 120 W to 300 W.
Abstract:
An x-ray diffraction system includes an x-ray source having a first interchangeable x-ray generating component, a second interchangeable x-ray generating component, an actuator and a controller operatively connected to the actuator. The first and second interchangeable x-ray generating components are interchangeable with one another. The actuator is operatively connected to the first and second interchangeable x-ray generating components. A method for non-destructive x-ray diffraction includes emitting a first x-ray beam from an x-ray source with a first interchangeable x-ray generating component based on a first desired depth to measure a crystallographic signature of a sample at the first desired depth, interchanging the first interchangeable x-ray generating component with a second interchangeable x-ray generating component to form a modified x-ray source, and emitting a second x-ray beam from the modified x-ray source based on a second desired depth, to non-destructively measure a crystallographic signature of the sample at the second desired depth.
Abstract:
A radiation generator may include an elongate generator housing having a proximal end and a distal end, a target electrode within the elongate generator housing at the distal end thereof, a charged particle source within the elongate generator housing at the proximal end thereof to direct charged particles at the target electrode. A plurality of accelerator electrodes may be spaced apart within the elongate generator housing between the target electrode and the charged particle source to define a charged particle accelerator section. Each accelerator electrode may include an annular portion having a first opening therein, and a frustoconical portion having a base coupled to the first opening of the annular portion and having a second opening so that charged particles from the charged particle source pass through the first and second openings to reach the target electrode.
Abstract:
An x-ray device utilizes a band of material to exchange charge through tribocharging within a chamber maintained at low fluid pressure. The charge is utilized to generate x-rays within the housing, which may pass through a window of the housing. Various contact rods may be used as part of the tribocharging process.
Abstract:
An apparatus for generating x-rays includes an electron beam generator and a first device arranged to apply an RF electric field to accelerate the electron beam from the generator. A photon source is arranged to provide photons to a zone to interact with the electron beam from the first device so as to generate x-rays via inverse-Compton scattering. A second device is arranged to apply an RF electric field to decelerate the electron beam after it has interacted. The first and second devices are connected by RF energy transmission means arranged to recover RF energy from the decelerated electron beam as it passes through the second device and transfer the recovered RF energy into the first device.
Abstract:
A photo-emitter x-ray source is provided that includes a photocathode electron source, a laser light source, where the laser light source illuminates the photocathode electron source to emit electrons, and an X-ray target, where the emitted electrons are focused on the X-ray target, where the X-ray target emits X-rays. The photocathode electron source can include alkali halides (such as CsBr and CsI), semiconductors (such as GaAs, InP), and theses materials modified with rare Earth element (such as Eu) doping, electron beam bombardment, and X-ray irradiation, and has a form factor that includes planar, patterned, or optically patterned. The X-ray target includes a material such as tungsten, copper, rhodium or molybdenum. The laser light source is pulsed or configured by light modulators including acousto-optics, mode-locking, micro-mirror array, and liquid crystals, the photocathode electron source includes a nano-aperture or nano-particle arrays, where the nano-aperture is a C-aperture or a circular aperture.
Abstract:
An aperture cooling structure (a cooling structure used for the open X-ray source) 10 comprises an aperture unit 31 formed with an aperture 33, a holder 34 for holding the aperture unit 31, and a heat dissipator 36 connected to the holder 34. The aperture 33 restricts an electron beam E from passing therethrough on an electron path 4 of an X-ray generator (open X-ray source). The heat dissipator 36 has a heat dissipation member 37 including a coolant flow path constituent part 41 and a heat dissipation member 38 including a coolant flow path constituent part 42. The coolant flow path constituent part 41 and the coolant flow path constituent part 42 are combined with each other, so as to construct a coolant flow path 43.
Abstract:
Disclosed herein are methods of sorting coal into multiple fractions based upon x-ray absorption and size characteristics in order to remove rocks and other contaminants of various sizes from coal. The use of such dry processing of coal is desirable as it reduces pollution and transportation costs. The multi-fractional sorting of coal is a more efficient manner for identifying and removing rock and contaminants from coal.
Abstract:
Man-portable radiation generation sources and systems that may be carried by hand to a site of interest by one or two people, are disclosed. Methods of use of such sources and systems are also disclosed. Battery operated radiation generation sources, air cooled radiation generation sources, and charged particle accelerators, are also disclosed. A radiation generation source, a radiation scanning system, and a target assembly comprising target material having a thickness of less than 0.20 mm are also disclosed.
Abstract:
A transmission-type X-ray target includes a flat plate-shaped diamond substrate having a first surface and a second surface facing the first surface and a target layer that is located on the first surface. A residual stress of the first surface is lower than a residual stress of the second surface.