Abstract:
The present disclosure describes a self-contained irradiator comprising at least one X-ray source inside a shielded enclosure, the one or more sources each operable to emit X-ray flux across an area substantially equal to the proximate facing surface area of material placed inside the enclosure to be irradiated. The irradiator may have multiple flat panel X-ray sources disposed, designed or operated so as to provide uniform flux to the material being irradiated. The advantages of the irradiator of the present disclosure include compactness, uniform flux doses, simplified thermal management, efficient shielding and safety, the ability to operate at high power levels for sustained periods and high throughput.
Abstract:
The present invention is directed to an X-ray tube that has an electron source in the form of a cathode and an anode within a housing. The anode is a thin film anode, so that most of the electrons which do not interact with it to produce X-rays pass directly through it. A retardation electrode is located behind the anode and is held at a potential which is negative with respect to the anode and slightly positive with respect to the cathode.
Abstract:
The present invention relates to an X-ray tube, having a structure enabling capturing of a clear magnified transmission image and enabling increase of a magnification factor of the magnified transmission image, and an X-ray source including the X-ray tube. In the X-ray tube, X-rays are generated by making electrons from an electron gun incident onto an X-ray target of an anode, disposed inside an anode housing unit, and the generated X-rays are taken out from an X-ray emission window. In particular, the anode housing unit has a pair of conductive flat portions disposed parallel to a reference plane, orthogonal to an electron incidence surface of the X-ray target, and so as to sandwich the X-ray target. The reference plane contains a first reference line, joining an electron emission exit center of the electron gun and an electron incidence surface center of the X-ray target, and a second reference line, being a straight line intersecting the first reference line on the electron incidence surface of the X-ray target and joining the electron incidence surface center and an X-ray emission window center.
Abstract:
The present invention relates to an X-ray tube, having a structure for effectively suppressing discharge at a tip of an anode, irradiated with electrons in order to generate X-rays, and an X-ray source including the X-ray tube. In the X-ray tube, electrons emitted from an electron gun are made to collide with an X-ray target, and X-rays generated at the X-ray target due to the collision are taken out to an exterior. The X-ray tube includes: a head, defining an internal space that houses a tip of an anode; an irradiation window, transmitting the generated X-rays to the exterior; an exhaust port, disposed at an inner wall surface of a casing and being for vacuum drawing of the internal space; and a shielding structure, hiding the exhaust port from the tip of the anode.
Abstract:
A conical anode X-ray source with a spot size approximately one tenth of the size of existing mammography devices. The source produces the same or higher radiance than the prior art. It also produces almost no high-energy Bremstrahlung. The electron beam is directed into a conical anode so that it strikes the reflecting surface at an angle which produces total internal reflection. The X-rays emitted via the reflection would ordinarily exit the small end of the conical anode in a diverging conical pattern—producing an undesirable “ring” configuration at the image plane. A homogenizing optic is therefore preferably added to the small end of the conical anode. The homogenizing optic is sized to reflect the X-rays emerging from the conical anode and thereby create a uniform “spot” source at the far end of the homogenizing optic.
Abstract:
An improved electron bombardment device includes a first tubular member for containing a target material and a second tubular member surrounding the first tubular member, leaving a space between the first and second tubular members. In an embodiment of the invention, the second tubular member is an electron emitting material, and the bombardment device includes a voltage application means for accelerating emitted electrons from the second tubular member towards the first tubular member. In a further embodiment of the invention, the second tubular member comprises a thermionic electron emitting material. In an alternative embodiment, the second tubular member comprises a field electron emitting material.
Abstract:
A method and apparatus, such as a spectrometer, are provided for facilitating the detection of an x-ray signal in a manner that effectively discriminates the x-ray signal from noise. A spectrometer may be provided which includes an x-ray converter for converting x-ray signals which impinge thereupon into corresponding pairs of electrons and positrons. The spectrometer also includes a deflector for separately deflecting the electrons and the positrons as well as electron and positron detectors for separately detecting the deflected electrons and positrons, respectively. As such, an x-ray signal can be identified in instances in which the deflected electrons and positrons are detected in coincidence.
Abstract:
Disclosed are an X-ray target having a micro focus size and capable of producing X-rays of high intensity, and apparatuses using such an X-ray target. The X-ray target (1) has a structure in which a first cap layer (21), a target layer (22), and a second cap layer (23) are successively laminated, wherein the first and second cap layers (21 and 23) are each composed of a material which is lower in electron beam absorptivity than that of which the target layer (22) is composed. An X-ray generator using the X-ray target (1) can generate highly intense and nanofocus (several nm) X-rays (17). Using the X-ray generator, an X-ray microscope allows obtaining a high resolution transmission image, an X-ray diffraction apparatus allows obtaining an X-ray diffraction image of a very small area, and a fluorescent X-ray analysis apparatus allows making the fluorescent X-ray analysis of a minute area.
Abstract:
An anode for an X-ray source is formed in two parts, a main part and a collimating part. The main part has the target region formed on it. The two parts between them define an electron aperture through which electrons pass to reach the target region, and an X-ray aperture through which the X-rays produced at the target leave the anode. The anode produces at least the first stage of collimation of the X-ray beam produced.
Abstract:
There are disclosed an X-ray tube and an X-ray analysis apparatus which are made smaller and lighter in weight than heretofore and which detect fluorescent X-rays more efficiently with enhanced sensitivity. The X-ray tube has a vacuum enclosure, an electron beam source mounted in the enclosure and emitting an electron beam, a target irradiated with the beam and producing primary X-rays, an X-ray detector device, and a metallic thermal and electrical conductor portion mounted over a part of the window and extending from the target to the enclosure. The enclosure has a vacuum inside and a window made of an X-ray transmissive film through which X-rays are transmitted. The target is smaller in outside diameter than the window and mounted over the central portion of the window such that the primary X-rays can be ejected at an external sample through the window. The detector device is disposed in the enclosure such that it can detect the fluorescent and scattering X-rays entering from the window after being released from the sample. The detector device outputs a signal carrying information about the energies of the fluorescent and scattering X-rays.