Abstract:
Radio communication system includes radio transmitter containing unit dividing transmission data into first-code blocks each having N-bit data, unit adding error detection codes to first-code blocks, unit assigning first-code blocks to second-code blocks each including M carriers each having L symbols, and unit transmitting second-code blocks, and radio receiver containing unit receiving second-code blocks, unit converting second-code blocks into first-code blocks, based on values of M and L, unit subjecting first-coded blocks to error correction decoding, unit detecting error of code block of first-code blocks subjected to error correction decoding, unit generating retransmission-request signal for requesting retransmission of code block including error, if error is detected, and unit transmitting retransmission-request signal.
Abstract:
System performance in wireless communication is improved by increasing diversity in time, space and frequency. Information to be transmitted is processed by a convolution encoder to produce encoded bits. The encoded bits are interleaved and mapped to subcarriers. Symbols are created from the subcarriers and the symbols are transmitted so as to increase diversity in time, space and frequency. Circulation transmission in addition to interleaving is used to increase diversity. For example, circulation transmission can be symbol based or subcarrier based.
Abstract:
Methods and apparatus are disclosed herein for providing incremental redundancy in a wireless communication system to aid in error recovery. One or more redundancy versions are sent on different carriers than the primary version of information to be transmitted. At the receiver end the redundancy versions may be combined using hard or soft combining techniques, including selection combining, selective soft combining or soft combining.
Abstract:
A method and apparatus for transmitting data having time diversity and data having time-frequency diversity, and a pattern generating method for the same are disclosed. The apparatus enables Tx data to have time diversity or time frequency diversity using a predetermined pattern multiplied by Tx data of a time domain or Tx data of time and frequency domains. The apparatus makes a cyclic delay diversity (CDD) scheme to have the diversity of time and frequency domains, and may acquire an additional diversity gain by a combination of the above-mentioned methods.
Abstract:
A method of selecting a modulation and coding scheme (MCS) in a wireless communication system is disclosed. More specifically, the method includes selecting a MCS index having a coding rate that is greater than a specified coding rate threshold if a resource allocation scheme of a transmitting end employs a localized resource allocation scheme, and selecting the MCS index having the coding rate that is less than the specified coding rate threshold if the resource allocation scheme of the transmitting end employs the distributed resource allocation scheme.
Abstract:
The present invention aims to provide a method for mapping signals to subcarriers in a sending means of a MIMO-based wireless telecommunication network and an apparatus for the same. It is characterized in that, controlling the mapping of the signals in an input signal sequence to the subcarriers, so that the signals sent by different antennas at the same time correspond to nonadjacent signals in the input signal sequence. With the aid of the present invention, burst error due to deep fading channel can be effectively avoided, and diversity gains can be also improved.
Abstract:
An interleaving method (2) and an interleaver (9) for frequency interleaving data symbols. The data symbols are for allocation to carriers in a set of NFFT carriers of a module for multiplexing and modulation by orthogonal functions in a multicarrier transmitter device (3). A block of Npm successive data symbols is interleaved in application of an interleaving law that varies over time for a given transmission mode of the transmitter device, where Npm is less than or equal to NFFT.
Abstract:
A mobile station includes a control unit configured to change at least one parameter for a retransmission packet from that of a transmission packet, where the at least one parameter is selected from a data modulation scheme; a channel coding rate; a puncturing pattern; a spreading factor; a frequency bandwidth; a frequency allocation position; and transmission power. A base station includes a retransmission format determining unit configured to determine a pattern used for changing at least one parameter for a retransmission packet from that of a transmission packet to determine a format for the retransmission packet, where the at least one parameter is selected from a data modulation scheme; a channel coding rate; a puncturing pattern; a spreading factor; a frequency bandwidth; a frequency allocation position; and transmission power; and a control signal generating unit configured to generate a control signal based on the format for the retransmission packet determined by the retransmission format determining unit.
Abstract:
The performance and symbol rate in a wireless mobile system are increased by forming a transmission code matrix using transformed orthogonal codes, in such a way that the code is robust to channel statistics and operates well in both Ricean and (correlated) Rayleigh channels. Furthermore, the invention enables high symbol rate transmission using multiple transmit antennas, and one or multiple receive antennas, and obtains simultaneously high diversity order and high symbol or data rate.
Abstract:
There is disclosed an antenna diversity system for relatively broadband broadcast reception in vehicles such as motor vehicles. The device can include a diversity processor having numerous components including a microprocessor for controlling a signal selection switch. In alternative embodiments the processor can be incorporated into a receiver or into a multi-antenna system. One advantage of these designs is that it is able to exist with one reception tuner and being able to select one signal from a plurality of antenna signals A1, A2, . . . AN, with great probability, whose signal components lie above the level necessary for interference-free reception, over the entire channel bandwidth B.