Abstract:
The present disclosure relates to a prepreg formed by drying a fabric substrate impregnated with a resin composition by means of heating until the resin composition is in a semi-cured state. The resin composition contains (A) at least one of an epoxy resin having naphthalene skeleton and a phenolic curing agent; and (B) a polymer having structures represented by the following formulae (I) and (II), no unsaturated bond between carbon atoms, an epoxy value ranging from 0.2 to 0.8 ep/kg, and an weight-average molecular weight ranging from 200,000 to 850,000: wherein X:Y=0:1 to 0.35:0.65, R1 represents H or CH3, and R2 represents H or an alkyl group.
Abstract translation:本公开内容涉及通过加热干燥浸渍有树脂组合物的织物基材形成的预浸料,直到树脂组合物处于半固化状态。 树脂组合物含有(A)具有萘骨架的环氧树脂和酚类固化剂中的至少一种; 和(B)具有由下式(I)和(II)表示的结构的聚合物,碳原子之间的不饱和键,环氧值为0.2至0.8 ep / kg,重均分子量为20万 至850,000:其中X:Y = 0:1至0.35:0.65,R1表示H或CH3,R2表示H或烷基。
Abstract:
A wiring board 10 includes a lower wiring conductor 1, an upper insulating layer 2 laminated on the lower wiring conductor 1 and having a via hole 5 where a bottom surface is the lower wiring conductor 1, and a via conductor 3 connected to the lower wiring conductor 1 and filling the via hole 5; and the upper insulating layer 2 includes a first resin layer 2a and a second resin layer 2b sequentially laminated on the lower wiring conductor 1, the via hole 5 has an annular groove 5a over a whole circumference of the inner wall in a boundary between both resin layers 2a and 2b, and the via conductor 3 fills the groove 5.
Abstract:
A flame retardant filler having brominated silica particles, for example, imparts flame retardancy to manufactured articles such as printed circuit boards (PCBs), connectors, and other articles of manufacture that employ thermosetting plastics or thermoplastics. In this example, brominated silica particles serve both as a filler for rheology control (viscosity, flow, etc.) and a flame retardant. In an exemplary application, a PCB laminate stack-up includes conductive planes separated from each other by a dielectric material that includes a flame retardant filler comprised of brominated silica particles. In an exemplary method of synthesizing the brominated silica particles, a monomer having a brominated aromatic functional group is reacted with functionalized silica particles (e.g., isocyanate, vinyl, amine, or epoxy functionalized silica particles). Alternatively, a monomer having a brominated aromatic functional group may be reacted with a silane to produce a brominated alkoxysilane monomer, which is then reacted with the surface of silica particles.
Abstract:
Epoxy resin composition and prepreg and copper clad laminate manufactured by using the same are provided. The epoxy resin composition comprises the following essential components: (A) epoxy resin containing naphthol structure; (B) active ester curing agent; (C) curing accelerant. The epoxy composition in this invention can be used to prepare epoxy resin condensate with low water absorption and low dielectric loss value. The prepreg and copper clad laminate manufactured have good dielectric properties, moisture and heat resistance performance and high glass transition temperature.
Abstract:
A semiconductor device includes an electrical insulating layer with superior heat resistance, heat dissipation, and durability, and which is manufactured through a process with good cost performance and process performance. In a semiconductor device including a first substrate to which a semiconductor chip is mounted directly or indirectly, and a white insulating layer formed on a surface of the first substrate and functioning as a reflecting material, the semiconductor chip is an LED, at least the surface of the first substrate is made of a metal, and a stacked structure of the white insulating layer and a metal layer is formed by coating a liquid material, which contains SiO2 in the form of nanoparticles and a white inorganic pigment, over the surface of the first substrate and baking the coated liquid material.
Abstract:
The present invention relates to a resin composition which includes a copolymer consisting of a first monomer containing a monomer unit having at least one carboxyl group and a second monomer copolymerizable with the first monomer, and also includes an ultraviolet absorber. The resin composition used is a resin composition for which, when ∈1 represents an absorbance coefficient per unit weight of a resin film 2 in a solution prepared by dissolving, in a solvent, the resin film 2 formed by application of the resin composition as a liquid, ∈1 at a light wavelength at which the resin film 2 is to be irradiated is at least 0.01 (L/(g·cm)).
Abstract:
A halogen-free resin composition, a copper clad laminate using the same, and a printed circuit board using the same are introduced. The halogen-free resin composition comprising (A) 100 parts by weight of epoxy resin; (B) 3 to 15 parts by weight of diaminodiphenyl sulfone (DDS); and (C) 5 to 70 parts by weight of phenolic co-hardener. The halogen-free resin composition features specific ingredients and proportion to thereby achieve satisfactory maximum preservation period of the prepreg manufactured from the halogen-free resin composition, control the related manufacturing process better, and attain satisfactory laminate properties, such as a high degree of water resistance, a high degree of heat resistance, and satisfactory dielectric properties, and thus is suitable for producing a prepreg or a resin film to thereby be applicable to copper clad laminates and printed circuit boards.
Abstract:
A planar thermal dissipation patch comprises a polymer substrate; an adhesive layer attached under the polymer substrate; a protection sheet over the adhesive layer, the protection sheet is removed from the adhesive layer before attaching the planar thermal dissipation patch; a thermal dissipation layer formed on the polymer substrate; wherein the thermal dissipation layer is formed of CNT, conductive polymer, graphite or the combination thereof.
Abstract:
A printed wiring board includes a core substrate, an electronic component accommodated in the substrate, a first buildup layer laminated on first surface of the substrate and including the outermost interlayer resin insulation layer and the outermost conductive layer formed on the outermost interlayer resin insulation layer of the first buildup layer, and a second buildup layer laminated on second surface of the substrate and including the outermost interlayer resin insulation layer and the outermost conductive layer formed on the outermost interlayer resin insulation layer of the second buildup layer. The outermost interlayer resin insulation layer of the first buildup layer has thermal expansion coefficient which is set lower than thermal expansion coefficient of the outermost interlayer resin insulation layer of the second buildup layer.
Abstract:
Provided are a multilayer board and a light-emitting module having the same. The light-emitting module comprises a light-emitting diode chip and a multilayer board. The multilayer board is electrically connected to the light-emitting diode chip and comprises a nonconductive heat sink via and a thin copper layer.