Abstract:
Said electronic power module (10) includes: a stack (14) comprising a metal layer forming an electric circuit (26) and intended for supporting an electronic power component (18) such as a semiconductor; a metal body forming a heat drain (20); and a dielectric material layer (22) forming an electric insulator and inserted between the electric circuit (26) and the heat drain (20). The stack (14) includes a composite material body (24) having a carbon-charged metal matrix. The carbon charge is between 20 and 60 volume percent. Said composite body (24) is inserted between an area of the electric circuit (26) and the electric insulator (22), said area being intended for supporting the electronic power component (18).
Abstract:
The present invention relates to a method of producing an electrically-conducting via in a substrate and to a substrate produced thereby. The method comprises the steps: a) providing a substrate made of at least one electrically insulating material (1), b) placing said substrate between two electrodes (3, 3′), said two electrodes being connected to a user-controlled voltage source (4), c) appling a voltage to said substrate, d) causing a dielectric breakdown and energy dissipation between said two electrodes through said substrate by locally or globally increasing the electrical conductivity of said substrate, wherein, in step d), a modification of said at least one electrically insulating material into an electrically conducting material occurs, thereby generating an electrically conducting via (6). In particular, in one embodiment, the present invention relates to a substrate, such as a printed circuit board having one or several metal-free electrically conducting vias.
Abstract:
An electrical circuit structure employing graphene as a charge carrier transport layer. The structure includes a plurality of graphene layers. Electrical contact is made with one of the layer of the plurality of graphene layers, so that charge carriers travel only through that one layer. By constructing the active graphene layer within or on a plurality of graphene layers, the active graphene layer maintains the necessary planarity and crystalline integrity to ensure that the high charge carrier mobility properties of the active graphene layer remain intact.
Abstract:
A printed circuit board and a method for manufacturing the printed circuit board are disclosed. The method can include; providing an insulated layer, in which a first metal layer is formed on one side of the insulated layer; forming a groove on the insulated layer; forming a metallic substance on an inner side of the groove and on another side of the insulated layer; and forming a first circuit pattern on at least one of one side of the insulated layer and the metallic substance formed on the groove by removing a portion of the first metal layer. The present invention provides the printed circuit board having a high efficiency of heat emission by disposing a heat sink in direct contact with a board and the method of manufacturing the printed circuit board.
Abstract:
A circuit board has plated through holes which are laid out with a fine pitch and meets requirements relating to characteristics such as the thermal expansion coefficient of the circuit board. A method of manufacturing a circuit board includes: a step of forming a core portion by thermal compression bonding prepregs which include first fibers that conduct electricity and second fibers that do not conduct electricity, which have the second fibers disposed at positions where plated through holes will pass through, and which are impregnated with resin; a step of forming through holes at positions in the core portion where the second fibers are disposed; and a step of forming a conductive layer on inner surfaces of the through holes to form plated through holes at positions that do not interfere with the first fibers and thereby produce a core substrate.
Abstract:
Provided is a polymer resin composition for manufacturing an insulating film for manufacture of a printed circuit board. The polymer resin composition includes polymer resins and graphene for linking the polymer resins with larger attraction than Van Deer Waals's force of the polymer resins.
Abstract:
A multilayered polyimide film including a polyimide layer (b), and a pigment-containing polyimide layer (a) stacked on one surface or both surfaces of the polyimide layer (b), wherein the polyimide layer (b) is formed of a polyimide including an aromatic tetracarboxylic acid unit containing a 3,3′,4,4′-biphenyltetracarboxylic acid unit in an amount of 70 to 100 mol %, and an aromatic diamine unit containing a p-phenylenediamine unit in an amount of 70 to 100 mol %.
Abstract:
The core layer of a core substrate is made of carbon fibers impregnated with resin. When the temperature of the core layer increases, the core layer suffers from an increase in the thickness because of thermal expansion of the resin. The core layer is sandwiched between the insulating layers containing glass fibers. The insulating layers serve to suppress an increase in the thickness of the core layer resulting from the thermal expansion of the core layer. Thermal stress is suppressed in the core substrate.
Abstract:
Disclosed is a multilayer material in which at least two components are jointed to each other via an adhesive bond. The adhesive bond is formed by an adhesive or bonding layer containing nanofiber material in a matrix that is suitable as an adhesive.
Abstract:
Large-sized through holes are formed in a core layer of a printed wiring board. Large-sized vias are formed in the shape of a cylinder along the inward wall surfaces of the large-sized through holes located within a specific area. A filling material fills the inner space of the large-sized via. A small-sized through hole penetrates through the corresponding filling material along the longitudinal axis of the small-sized through hole. A small-sized via is formed in the shape of a cylinder along the inward wall surface of the small-sized through hole. The filling material and the core layer are uniformly distributed within the specific area in the in-plane direction of the core substrate. This results in suppression of uneven distribution of thermal stress in the core layer in the in-plane direction of the core layer.