Abstract:
A wired circuit board includes an insulating layer, and a first conductive pattern and a second conductive pattern formed on the insulating layer. The first conductive pattern includes a first outer terminal on which a metal plating layer is provided, a first inner terminal to be solder connected, and a first wire which connects the first outer terminal and the first inner terminal. The second conductive pattern includes a second outer terminal to be solder connected, a second inner terminal to be solder connected, and a second wire which connects the second outer terminal and the second inner terminal. The first inner terminal and the second inner terminal are arranged in opposed relation with each other so as to be solder connected to the common electric component and preflux processing is performed thereon, and a metal plating layer is provided on the second wire.
Abstract:
A circuit board 1 having a base material 10 and an electrode 11 formed on at least one main surface of the base material 10 includes an easy peeling portion 12 formed in at least one of an inner portion and a side portion of the electrode 11, with the adhesive strength between the electrode 11 and the easy peeling portion 12 being less than the adhesive strength between the electrode 11 and the base material 10. A circuit board that has high connection reliability and enables narrow pitch mounting thereby can be provided.
Abstract:
A multilayer printed circuit board including a substrate board and a built-up structure formed over the substrate board. The built-up structure includes conductor circuits and resin insulating layers. The built-up structure has via holes interconnecting the conductor circuits through one or more resin insulating layers. The via holes are filled up with plating, and the resin insulating layers is formed of a cycloolefin resin.
Abstract:
A circuit board includes an insulating layer and a conductive layer formed on the insulating layer. The insulating layer contains a resin with high heat resistance. The conductive layer includes a metal carbide layer bonded to the insulating layer and containing a carbide of a first metal in group IV, V, or VI of the periodic table, and a first metal layer bonded to the metal carbide layer and containing the first metal.
Abstract:
An array substrate comprises a substrate provided with a circuit pattern and covering layers that cover the upper surfaces and side surfaces of respective portions of the circuit pattern.
Abstract:
A printed circuit board includes a multiple-layer electrical circuit board and a nickel arm, wherein the nickel arm has an unconnected end located opposite to the connected end of the nickel arm, wherein the nickel arm has a front side and a backside located opposite to the front side of the nickel arm, wherein the backside of the nickel arm is located adjacent to the multiple layer electrical circuit board. A dimple is formed at the unconnected end of the nickel arm and on the front side of the nickel arm. An air gap is formed between the backside of the arm and the multiple layer electrical circuit board, wherein the air gap permits the arm to flex within the air gap. A lead zirconium titanate element is laminated to the printed circuit board, wherein the dimple on the front side of the arm contacts a surface of the lead zirconium titanate element, wherein a restoring spring force of the nickel arm maintains electrical contactivity between the dimple and the lead zirconium titanate element.
Abstract:
A printed circuit board is disclosed having coextensive electrical connectors and contact pad areas. Areas of the contact pads where the traces and/or vias are located may be etched away to ensure electrical isolation between the traces, vias and contact pads.
Abstract:
A method for manufacturing a printed circuit board enables a metal residue between wirings to be removed inexpensively without side etching of a copper layer while having sufficient insulation reliability for micro wiring working. The method includes forming a base metal layer directly at least on one face of an insulator film without an adhesive, and a copper coat layer formed on the base metal layer to form adhesiveless copper clad laminates, then forming a pattern on the adhesiveless copper clad laminates by an etching method. The etching method includes a process of etching treatment for the adhesiveless copper clad laminates with an iron (III) chloride solution or a copper (II) chloride solution containing hydrochloric acid and then, a process of treatment with an acid oxidant containing permanganate and acetic acid.
Abstract:
A wired circuit board is provided which can reduce transmission loss with a simple layer structure and also features excellent long-term reliability by preventing the occurrence of an ion migration phenomenon between a metal foil and an insulating layer to improve the adhesion between the metal foil and the insulating layer and the conductivity of a conductor. A metal supporting board is prepared and a first metal thin film is formed on the metal supporting board by sputtering or electrolytic plating. A metal foil is formed on the first metal thin film by electrolytic plating. A second metal thin film is formed over the metal foil and the metal supporting board by electroless plating or sputtering. An insulating base layer is formed on the second metal thin film. A conductive pattern is formed as a wired circuit pattern on the insulating base layer. An insulating cover layer is formed on the insulating base layer to cover the conductive pattern.
Abstract:
A conducting film or device electrode includes a substrate and two transparent or semitransparent conductive layers separated by a transparent or semitransparent intervening layer. The intervening layer includes electrically conductive pathways between the first and second conductive layers to help reduce interfacial reflections occurring between particular layers in devices incorporating the conducting film or electrode.