Abstract:
The invention is a method for making a metal core printed circuit board which includes applying multiple layers of synthetic plastic resin material to a sheet of metal, then treating the surface of the plastic material in such a way as to provide an acceptable bond, followed by applying sundry layers of different metals, first to the plastic surface and then one upon another followed by the imposition of a circuit pattern, the removal of materials from areas intermediate the circuit pattern, and the application of an appropriate overlay of unlike metal to the circuit pattern, thereby to provide a finished circuit board.
Abstract:
PRINTED CIRCUITS, INTEGRATED CIRCUITS, RESISTORS, THERMOCOUPLES, CONDENSERS, SUPERCONDUCTORS, ELECTROFORMED MATERIALS, AND THE LIKE ARE PRODUCED BY PROVIDING A PLASTIC OR SUBSTANTIALLY NON-METALLIC SUBSTRATE WITH A METAL PHOSPHIDE; APPLYING A RESIST; REMOVING THE UNPROTECTED METAL PHOSPHIDE; DISSOLVING THE RESIST; AND SUBJECTING THE SUBSTRATE TO ELECTROLESS OR ELECTROLYTIC TREATMENT.
Abstract:
A wiring board according to the present disclosure includes an insulation layer, and a wiring conductor positioned on the insulation layer. The wiring conductor includes a phosphorus-containing electroless copper-plating layer positioned on the insulation layer, a nickel-containing electroless copper-plating layer positioned on the phosphorus-containing electroless copper-plating layer, and an electrolytic copper-plating layer positioned on the nickel-containing electroless copper-plating layer.
Abstract:
A circuit board includes a substrate, a patterned copper layer, a phosphorous-containing electroless plating palladium layer, an electroless plating palladium layer and an immersion plating gold layer. The patterned copper layer is disposed on the substrate. The phosphorous-containing electroless plating palladium layer is disposed on the patterned copper layer, wherein in the phosphorous-containing electroless plating palladium layer, a weight percentage of phosphorous is in a range from 4% to 6%, and a weight percentage of palladium is in a range from 94% to 96%. The electroless plating palladium layer is disposed on the phosphorous-containing electroless plating palladium layer, wherein in the electroless plating palladium layer, a weight percentage of palladium is 99% or more. The immersion plating gold layer is disposed on the electroless plating palladium layer.
Abstract:
A multilayer wiring board with a built-in electronic component includes a substrate, a conductor layer formed on surface of the substrate, one or more electronic components positioned in a cavity formed through the substrate, an insulating layer formed on the substrate such that the insulating layer is formed on the component in the cavity, and a wiring layer formed on the insulating layer. The conductor layer has an opening formed such that the cavity is formed in the opening of the conductor layer and that the conductor layer has a first side in the opening and a second side in the opening on the opposite side across the cavity, and the cavity is formed in the opening of the conductor layer such that width between the cavity and the first side of the conductor layer is greater than width between the cavity and the second side of the conductor layer.
Abstract:
Some novel features pertain to a substrate that includes a first dielectric layer, a first interconnect, a first cavity, and a first electroless metal layer. The first dielectric layer includes a first surface and a second surface. The first interconnect is on the first surface of the substrate layer. The first cavity traverses the first surface of the first dielectric layer. The first electroless metal layer is formed at least partially in the first cavity. The first electroless metal layer defines a second interconnect embedded in the first dielectric layer. In some implementations, the substrate further includes a core layer. The core layer includes a first surface and a second surface. The first surface of the core layer is coupled to the second surface of the first dielectric layer. In some implementations, the substrate further includes a second dielectric layer.
Abstract:
A multilayer wiring board with a built-in electronic component includes a substrate, a conductor layer formed on surface of the substrate, one or more electronic components positioned in a cavity formed through the substrate, an insulating layer formed on the substrate such that the insulating layer is formed on the component in the cavity, and a wiring layer formed on the insulating layer. The conductor layer has an opening formed such that the cavity is formed in the opening of the conductor layer and that the conductor layer has a first side in the opening and a second side in the opening on the opposite side across the cavity, and the cavity is formed in the opening of the conductor layer such that width between the cavity and the first side of the conductor layer is greater than width between the cavity and the second side of the conductor layer.