Abstract:
An aluminum/silicon carbide composite prepared by infiltrating a flat silicon carbide porous body with a metal containing aluminum as the main component, including an aluminum alloy layer made of a metal containing aluminum as the main component on both principal planes, and one principal plane is bonded to a circuit plate and the other principal plane is utilized as a radiation plane. The silicon carbide porous body is formed or machined into a convexly bowed shape, and after infiltration with the metal containing aluminum as the main component, the aluminum alloy layer on the radiation plane is further machined to form the bow shape. The aluminum/silicon carbide composite is suitable as a base plate for a ceramic circuit plate on which semiconductor components are mounted, for which high reliability is required.
Abstract:
A flexible display device includes a display panel and a plurality of curving-restricting structures. The display panel has a display surface and a bottom surface opposite thereto. The display surface has a visible region and an outer region surrounding the visible region. The curving-restricting structures may be disposed on at least one of the outer region of the display surface and the bottom surface of the display panel. Each curving-restricting structure has a top surface and at least a slanted side wall. The top surfaces of adjacent curving-restricting structures are spaced with each other, and the slanted side walls of adjacent curving-restricting structures face each other. When the flexible display device are curved to a predetermined extent, adjacent curving-restricting structures may resist against with each other to prevent the display panel from being unduly curved to be damaged, and thus a use reliability of the flexible display device is improved.
Abstract:
A method of forming an electrical component is provided. The method comprises preparing a subassembly by electrically connecting an integrated circuit to a flexible circuit; and attaching the subassembly to a multilayer ceramic capacitor having a mounting surface with a curvature deviation exceeding 0.008 inches per inch.
Abstract:
An electric circuit is applied to an object having a curved surface. The curved surface of the object is divided into sections, and the circuit is applied one section at a time. The circuit is formed between layers of dielectric material. The dielectric is applied by a computer-controlled device, which controls the position of a spray head and the rotation of the object, such that the spray head is held substantially perpendicular to the surface of the object at all times, and such that a controlled thickness of dielectric material can be deposited. The fine-featured circuits formed by the invention are rugged, and can be used on objects intended to be exposed to harsh environments.
Abstract:
There is provided a nanoimprint apparatus. The nanoimprint apparatus transfers a pattern formed on a surface of a mold to a transfer layer which is formed partially or entirely on a side surface of a substantially cylindrical or columnar substrate. The nanoimprint apparatus includes: a first jig which is in contact with the substrate 102; a second jig which rotatably supports the first jig; a press unit which is connected to the second jig to press the substrate on the mold 104 through the first and second jigs; and a movable holding unit which holds the mold and moves the mold 104 in a direction substantially perpendicular to a pressing force.
Abstract:
A lighting device includes a heatsink 70, a socket 10 and an LED module 60. The LED module 60 has a light emitting unit 62 in a central part of a top side of a metal base substrate 63 composed of an insulating plate and a metal plate. The LED module 60 is warped such that the central part protrudes on a heatsink 70 side, which is the side opposite to the light emitting unit 62 side. The LED module 60 is mounted on the heatsink 70 in a state of the surrounds of the light emitting unit 62 being pressed according to pressing units 14T, 14L, and 14D of the socket 10. Pressing the surrounds of the light emitting unit 62 against the heatsink 70 ensures that a central part of the warping of the LED module 60 contacts the heatsink 70.
Abstract:
A complex printed circuit board structure including a flexible printed wiring board and a heat-dissipating substrate bonded with the flexible printed wiring board. Parts of surface material of the flexible printed wiring board is removed to form depressions or through holes for laying electronic elements therein. The surfaces of the electronic elements can at least partially get closer to or directly contact the heat-dissipating substrate through the depressions or through holes of the flexible printed wiring board. Therefore, the heat generated by the electronic elements can be more quickly and directly conducted to the heat-dissipating substrate and dissipated at high efficiency.
Abstract:
The invention concerns a method which consists in coating uniformly the non-developable surface (6) with an electrically conductive material (9), which is in turn coated, by spraying, with a pattern (10) of polymerizable protective material, said pattern being polymerized as it is being formed, and then selectively eliminating, through the openings (10.8) of said pattern (10), the portions of said electrically conductive material (9) which do not over said electrically conductive patterns.
Abstract:
According to an embodiment of the present invention, a printed wiring board manufacturing apparatus being provided with a drum unit having a processing cylinder that holds the printed wiring board material and comprises a cylinder outer circumference and a processing unit that performs processing on the printed wiring board material held by the processing cylinder.
Abstract:
A memory device for interconnection with a Universal Serial Bus (USB) Series A type receptacle of an electronic device includes a housing wherein the housing is largely rectangular, with the width and height of a USB Series A plug standard housing; a connector within the housing, electrical terminals in the housing; the housing and terminals of a form to connect with a USB Series A receptacle of an electronic device; and a data memory and a controller within the housing. The memory device may be used in combination with a portable computing device or peripheral or with a cell phone, gps or other electrical or electronic device that includes a receptacle to house the memory device of the type disclosed herein, wherein the memory device is largely within the electrical or electronic device. A method of transporting data between a peripheral and a computer (or processor) includes storing data in a portable memory device directly using a computer or a peripheral; transporting the portable memory device to the other of such a computer or a peripheral; and delivering data from the portable memory device directly to such other computer or peripheral, said delivering being while the portable memory device is largely within the peripheral during use of the peripheral.