Abstract:
A display device comprising a multi-color light emitting layer and method of depositing the multi-color light emitting layer over a glass substrate are provided. The display device comprises multiple light emitting materials deposited over a glass substrate in coplanar relationship to each other. The method provides depositing one light emitting polymer material over one portion of the glass substrate and depositing other light emitting polymer materials over other portions of the glass substrate, such that the multiple light emitting polymer materials are deposited in a coplanar relationship to each other. The light emitting polymer materials are deposited using flexographic mats, the relief portion of which have patterns corresponding to the respective portions of the glass substrate being covered by the light emitting polymer materials being deposited.
Abstract:
A CsX:Eu phosphor showing a narrow emission spectrum upon UV-excitation and panels including such a phosphor are disclosed. Also methods for preparing such a phosphor have been described.
Abstract:
A method including: dropping the ultraviolet-curable resin fluid onto the aspheric face of a metallic mold set horizontally, the aspheric face having a desired concave face; bringing a convex lens close to the metallic mold and stopping the movement of the lens just before it comes into contact with the ultraviolet-curable resin fluid; inclining the metallic mold and the lens together to cause the ultraviolet-curable resin fluid to flux; after bringing the convex face of the lens into point contact with this fluxed and swelled ultraviolet-curable resin fluid, moving the lens to a prescribed position relative to the metallic mold to place the ultraviolet-curable resin fluid between the lens and the metallic mold; returning the lens and the metallic mold together from the inclined state to the horizontal state, thereby irradiating the ultraviolet-curable resin fluid with ultraviolet rays to cure the resin fluid and form a molded resin layer.
Abstract:
A glass fiber wall covering is made by sequential application of a chemical dispersion, a hydrophobic coating to selectively create an image for painted effects, and a second image coating which created plastic volumetric images.
Abstract:
A method of coating an oblong shaped body (8) made of polymer material, which is intended for guiding light in the form of optical signals. In this case, a coating made of polymer material having a lower index of refraction than the shaped body (8) is applied around the shaped body (8). To generate the coating, a coating facility (A) having at least one chamber (1) is used, to which a halogenated gas (4) and/or gas mixture is supplied. The halogenated gas (4) and/or gas mixture is converted into a plasma (6) in the chamber (1) under the effect of microwaves (5) and conducted out of the chamber (1) through a nozzle (7). The shaped body (8) is moved at least one time over its entire length along the coating facility (A) in the region of the nozzle (7) and/or the plasma (6) emitting therefrom and, at the same time, provided with a coating (9) made of a halogenated polymer, which is generated by the incidence of the plasma (6).
Abstract:
The invention concerns a method for restoring the coating of a previously stripped optical fibre, characterised in that it comprises steps which consist in: applying a drop of viscous substance on one end of the fibre (10) stripped zone, at the interface (22) with the remaining initial coating (20), and shaping said drop into a mass (30) centre on the fibre (10) axis, tapering away from the adjacent initial coating (20), before filling up the fibre stripped space with a mass of substance capable of sheathing said fibre (10) again.
Abstract:
The present invention provides a method for forming on a medical device, preferably an ophthalmic lens, more preferably a contact lens, a diffusion-controllable coating capable of controlling the out-diffusion or release of guest materials from the medical device. The method of the invention comprises: (1) applying one layer of clay and optionally one or more layers of polyionic materials onto the medical device; or (2) applying alternatively a layer of a first polyionic material and a layer of a second polyionic material having charges opposite of the charges of the first polyionic material onto the medical device and releasing the coated medical device into a releasing medium having a composition capable of imparting a desired permeability to the diffusion-controllable coating on the medical device.
Abstract:
A method of applying a metal coating to optical element, such as an optical waveguide, comprising the steps of partially depleting stabilizers in an electroless metallic solution and immersing an optical waveguide in the electroless metallic solution to deposit the metal coating to the optical waveguide. The step of partially depleting may include creating an electroless metallic solution having a sodium hypophoshite concentration of about 25 grams per liter. The electroless metallic solution may comprise a Fidelity solution 4865A, a Fidelity solution 4865B and de-ionized water in a ratio of 1:1:18; and sodium hypophosphite crystals. Alternatively, the step of partially depleting may include placing a dummy load into the electroless metallic solution. The dummy load may be a rectangular block of metal, formed of a low carbon steel, and may have a threaded cylindrical passage therein. After depleting the stabilizers, the optical waveguide is immersed in the electroless metallic solution for a predetermined length of time depending on a desired deposition thickness.
Abstract:
The present invention introduces a concept of nullsmartnull ribbons, which use functionally tensioned optical fibers during the manufacture of fiber optic ribbons to create fiber ribbons with controlled geometrical configuration, optimized strain distribution and reduced attenuation. The ribbons may have flat or bowed cross section and be straight along the length or curved in its plane, or twisted unidirectionally, or periodically. These shapes and residual stress-strain state are induced and controlled by using tension functions instead of traditional constant-value tension per fiber during the ribbon manufacture. Further, the present invention reduces signal loss and/or attenuation in ribbon fibers caused by an increase in the strain variation from tensile strain to compressive strain along the length of the individual fibers when ribbons are manufactured, stacked, stranded around a strength member or twisted and bent during cable installation. In a first embodiment of the present invention, either a symmetric or non-symmetric load distribution is applied across the fibers being placed or drawn into a ribbon structure to eliminate or control residual twist in a completed fiber ribbon. Additionally, in the present invention, the load distribution on the fibers of a ribbon can be varied (e.g. periodically changed) along the length of the ribbon to provide a ribbon with the required design characteristics for any particular application. In a second embodiment of the invention, a fiber optic ribbon is made up of a plurality of sub-unit ribbons arranged in substantially the same plane. Each sub-unit ribbon includes a plurality of optical fibers coated by sub-unit matrices.
Abstract:
There is disclosed a manufacturing method of a large-area polarization element (10) whose film formed on a surface has an excellent adhesion. The method includes the steps of: forming an under film (12) on a glass substrate (11); coating the under film (12) with a metal dispersion; heating the metal dispersion; and forming a metal dispersed film (13) containing a fine metal particle (14). When the metal dispersion is heated, a noble metal ion in the metal dispersion is reduced to generate the fine metal particle (14). The fine metal particle (14) interacts with the under film (12), and is localized in the vicinity of an interface (16) of the under film (12) and metal dispersed film (13).