Abstract:
An examination kit allows for discovery of the axis of direction and stress areas of polarized lenses. The kit comprises a lower light box with a transparent work surface, two polarized film sheets, a dial gauge with notches defining allowable variation of axis direction and an upper polarized lens for viewing the tested polarized lens in various states and positions.
Abstract:
A system is configured to measure two separately polarized beams upon diffraction from a substrate in order to determine properties of a grating on a substrate. Linearly polarized light sources are passed via a fixed phase retarder in order to change the phase of one of two orthogonally polarized radiation beams with respect to the other of the two beams. The relative phases of the two radiation beams and other features of the beams as measured in a detector gives rise to properties of the substrate surface. The grating and the initial linear polarization of the radiation beam are angled non-orthogonally relative to each other.
Abstract:
A system and method for the in-line analysis of protein-containing compositions for protein denaturation. The system and method employ providing a protein-containing composition in a container that can be directly used in an analytical method for evaluating the denaturation of a protein. The container can be directly employed in an analytical technique such as UV spectroscopy, circular dichroism, etc.
Abstract:
Through silicon imaging and probing. A light source provides unpolarized light to be projected on a device under test (DUT). Light reflected from the DUT may be captured by a camera or other image capture device. A pellicle is utilized to reflect light from the light source toward the DUT. The pellicle also passes light reflected by the DUT to the camera. One or more linear polarizers or half wave plates may be used to provide the desired light polarization. The ability to provide the desired polarization provides an improved image that can be captured by the camera.
Abstract:
Polarization based channeled images are optically demodulated to produce directly viewable images. A channeled image flux is converted to an unpolarized flux by a phosphor or other sensor, and the resulting converted flux is demodulated by modulating at a spatial frequency corresponding to a modulating frequency of the channeled image flux. After modulation, the converted flux is spatially filtered to remove or attenuate portions associated with the modulation frequency and harmonics thereof. The resulting baseband flux is then imaged by direct viewing, projection, or using an image sensor and a display.
Abstract:
There is provided an electromagnetic field measurement apparatus capable of achieving correct and timely circuit operation detection in an area where electronic devices are mounted at high density. An electromagnetic field measurement apparatus includes: a laser light source; a polarized wave controller that linearly polarizes laser light; an optical fiber probe that has an electrooptic material or a magnetooptic material at its leading end and in which the laser light reflected at the leading end is subjected to polarization modulation in accordance with an electric field intensity or a magnetic field intensity; and an analyzer that converts the laser light reflected by the optical fiber probe into intensity modulated light. The laser light source emits time-multiplexed laser light of a plurality of wavelengths different from one another. The electromagnetic field measurement apparatus further includes: an optical circulator that outputs the laser light linearly polarized by the polarized wave controller to a multiplexer/demultiplexer and outputs the laser light input from the multiplexer/demultiplexer to the analyzer; and a multiplexer/demultiplexer that outputs the laser light to different optical fiber probes according to the wavelength of the laser light and outputs the laser light to the optical circulator.
Abstract:
Provided are a defect inspecting method and a defect inspecting apparatus, wherein defect detecting sensitivity is improved and also haze measurement is performed using polarization detection, while suppressing damages to samples. The defect inspecting apparatus is provided with a light source which oscillates to a sample a laser beam having a wavelength band wherein a small energy is absorbed, and two independent detecting optical systems, i.e., a defect detecting optical system which detects defect scattered light generated by a defect, by radiating the laser beams oscillated by the light source, and a haze detecting optical system which detects roughness scattered light generated due to roughness of the wafer surface. Polarization detection is independently performed with respect to the scattered light detected by the two detecting optical systems, and based on the two different detection signals, defect determination and haze measurement are performed.
Abstract:
A method of manufacturing a particle-based image display having a plurality of imaging cells is disclosed. The method includes filling the plurality of imaging cells with a plurality of first particles, identifying a defect associated with one or more of the imaging cells, and repairing the defect within a unit corresponding to part of the plurality of imaging cells.
Abstract:
A method measuring the birefringence of an object. A measurement beam having a defined input polarization state is generated, the measurement beam being directed onto the object. Polarization properties of the measurement beam after interaction with the object are detected in order to generate polarization measurement values representing an output polarization state of the measurement beam after interaction with the object. The input polarization state of the measurement beam is modulated into at least four different measurement states in accordance with a periodic modulation function of an angle parameter α, and the polarization measurement values associated with the at least four measurement states are processed to form a measurement function dependent on the angle parameter α. A two-wave portion of the measurement function is determined and analysed in order to derive at least one birefringence parameter describing the birefringence, preferably by double Fourier transformation of the measurement function.