Abstract:
The present invention relates to a multichip stacking package structure and a method for manufacturing the same, wherein the multichip stacking package structure comprises a substrate including a plurality of electrical connecting pad; a first chip with a lower surface stacked on the substrate; a second chip stacked on an upper surface of the first chip by a interlaced reciprocation stacking way; a spacer stacked on an upper surface of the second chip by the interlaced reciprocation stacking way; and third chip stacked on the an upper surface of the spacer by the interlaced reciprocation stacking way, so that a first spacing is formed between an end of the third and an end of the spacer. Thereby, a position of a stress point is changed to reduce a risk of the chip crack during wire bonding.
Abstract:
A meal top stacking package structure and a method for manufacturing the same are provided, wherein the metal top stacking package structure includes a metal base including an upper surface and a lower surface, and a die receiver cavity formed in the upper surface; a first chip fixed on the die receiver cavity by a first adhesion layer; a substrate with an upper surface; a second chip fixed on the upper surface of the substrate by a second adhesion layer; and a plurality of connecting components formed on the upper surface of the substrate; wherein the upper surface of the metal base is connected with the substrate by the connecting components. Thereby, the structure and method can enhance heat dissipation and electromagnetic shield of the stacking package structure.
Abstract:
A lead frame structure for quad flat no-lead (QFN) package includes a main base, a plurality of terminals and a first metal layer. The main base has a center area for carrying a semiconductor die, and a periphery area surrounding the center area. The plurality of terminals are arranged around the main base. The first metal layer has a first part formed on the periphery area of the main base, and a second part formed on the plurality of terminals. Wherein the main base and the plurality of terminals are formed by a stamping process, and the first metal layer is formed by a plating process before the stamping process.
Abstract:
A semiconductor packaging structure includes a chip, a metal barrier layer, a dielectric layer and two metal seed layers. The chip has a top surface, connection pads on the top surface, and a passivation layer on the top surface and partly covering the connection pads. The metal barrier layer is disposed on each of the connection pads; the dielectric layer is disposed on the passivation layer and the metal barrier layer, and has through holes to expose the metal barrier layer. The first of the metal seed layers is disposed on the dielectric layer and the exposed metal barrier layer, while the second metal seed layer is disposed on the first metal seed layer. Therefore, the metal barrier layer can effectively prevent damage to the connection pads of the chip during the manufacturing process.
Abstract:
A packaging structure for thin die is provided. The packaging structure has a substrate, a thin die, a strengthening layer and an encapsulation body. The thin die is disposed on and electrically connected with the substrate; the strengthening layer is disposed on the thin die; and the encapsulation body is formed on the substrate and covers both the thin die and the strengthening layer. The strengthening layer can bear pressure or stress during the formation of the encapsulation body to protect the thin die. A method for manufacturing the packaging structure for the thin die is further provided to manufacture the above packaging structure for the thin die.
Abstract:
The present invention relates to a meal top stacking package structure and a method for manufacturing the same, wherein the metal top stacking package structure comprises a metal base including an upper surface and a lower surface, and a die receiver cavity formed in the upper surface; a first chip fixed on the die receiver cavity by a first adhesion layer; a substrate with an upper surface; a second chip fixed on the upper surface of the substrate by a second adhesion layer; and a plurality of connecting components formed on the upper surface of the substrate; wherein the upper surface of the metal base is connected with the substrate by the connecting components. Thereby, the structure and method can enhance heat dissipation and electromagnetic shield of the stacking package structure.
Abstract:
A micro electronic component structure includes an insulating body, at least one conductive through hole, at least one conductive material, and at least one micro terminal. The insulating body has a top surface and a bottom surface. The conductive through hole penetrates the top surface and the bottom surface. The conductive material is formed in the conductive through hole. The micro terminal is disposed above the conductive material.
Abstract:
A micro electronic component structure includes an insulating body, at least one conductive through hole, at least one conductive material, and at least one micro terminal. The insulating body has a top surface and a bottom surface. The conductive through hole penetrates the top surface and the bottom surface. The conductive material is formed in the conductive through hole. The micro terminal is disposed above the conductive material.
Abstract:
A semiconductor packaging structure and a manufacturing method for the same are disclosed. The semiconductor packaging structure includes a chip, a dielectric layer and a plurality of redistribution circuit layers. The chip has a plurality of connection pads. The dielectric layer is disposed on the chip and defined with a plurality of containers therein. The connection pads are exposed from the containers, respectively. The redistribution circuit layers are disposed within the containers and electrically connected with the connection pads, respectively. Via these arrangements, the bonding surfaces between the redistribution circuit layers and the dielectric layer can be increased.
Abstract:
A packaging structure for thin die is provided. The packaging structure has a substrate, a thin die, a strengthening layer and an encapsulation body. The thin die is disposed on and electrically connected with the substrate; the strengthening layer is disposed on the thin die; and the encapsulation body is formed on the substrate and covers both the thin die and the strengthening layer. The strengthening layer can bear pressure or stress during the formation of the encapsulation body to protect the thin die. A method for manufacturing the packaging structure for the thin die is further provided to manufacture the above packaging structure for the thin die.