Abstract:
A terahertz wave detection device includes a wavelength filter transmitting terahertz waves having a predetermined wavelength, and a detection portion detecting the terahertz waves having the predetermined wavelength that have passed through the wavelength filter by converting the terahertz waves into heat, wherein the wavelength filter includes a metal layer having a plurality of holes communicating with an incident surface onto which the terahertz waves are incident and an emission surface from which the terahertz waves having the predetermined wavelength are emitted, and a dielectric portion filling in the plurality of holes and made of a dielectric, wherein the plurality of holes are formed with a predetermined pitch along a direction that is perpendicular to a normal line of the incident surface.
Abstract:
A terahertz wave generating device includes a first light source, a second light source and an antenna. The first light source and a second light source are configured and arranged to generate pulsed lights. The antenna is configured and arranged to generate terahertz waves when irradiated by the pulsed lights generated by the first light source and the second light source. The antenna has a pair of electrodes arranged opposite each other with a gap being formed therebetween. The first light source and the second light source are configured and arranged to irradiate the pulsed lights between the electrodes at timings that are offset from each other.
Abstract:
A terahertz wave detection device includes a wavelength filter transmitting terahertz waves having a predetermined wavelength, and a detection portion detecting the terahertz waves having the predetermined wavelength that have passed through the wavelength filter by converting the terahertz waves into heat, wherein the wavelength filter includes a metal layer having a plurality of holes communicating with an incident surface onto which the terahertz waves are incident and an emission surface from which the terahertz waves having the predetermined wavelength are emitted, and a dielectric portion filling in the plurality of holes and made of a dielectric, wherein the plurality of holes are formed with a predetermined pitch along a direction that is perpendicular to a normal line of the incident surface.
Abstract:
A terahertz wave generating device includes a plurality of light sources and an antenna. The light sources are configured to generate pulsed light. The antenna is configured to generate terahertz waves by being irradiated with the pulsed light generated by the light sources. The antenna has a plurality of pairs of electrodes with the electrodes in each of the pairs facing each other across a gap portion with a predetermined distance. The light sources is configured to irradiate the gap portions between the electrodes in the pairs with the pulsed light such that the gap portions between the electrodes of at least two of the pairs are irradiated with the pulsed light at mutually different timings.
Abstract:
A terahertz wave generating device includes a plurality of light sources and an antenna. The light sources are configured to generate pulsed light. The antenna is configured to generate terahertz waves by being irradiated with the pulsed light generated by the light sources. The antenna has a plurality of pairs of electrodes with the electrodes in each of the pairs facing each other across a gap portion with a predetermined distance. The light sources is configured to irradiate the gap portions between the electrodes in the pairs with the pulsed light such that the gap portions between the electrodes of at least two of the pairs are irradiated with the pulsed light at mutually different timings.
Abstract:
A terahertz wave generating device includes a first light source, a second light source and an antenna. The first light source and a second light source are configured and arranged to generate pulsed lights. The antenna is configured and arranged to generate terahertz waves when irradiated by the pulsed lights generated by the first light source and the second light source. The antenna has a pair of electrodes arranged opposite each other with a gap being formed therebetween. The first light source and the second light source are configured and arranged to irradiate the pulsed lights between the electrodes at timings that are offset from each other.