Abstract:
A method and apparatus are provided in which a cavity is formed in a support structure, the support structure being operable to support a semiconductor device, disposing at least a portion of a circuit element in the cavity in the support structure, filling the cavity in the support structure with an electrically non-conductive filling material so as to at least partially surround the circuit element with the non-conductive filling material, and electrically connecting the semiconductor device to the circuit element. In an example embodiment, the circuit element is operable to substantially block direct current that is output by the semiconductor device or another semiconductor device.
Abstract:
A method is provided in which an impedance is measured between a first of a plurality of seal ring contact pads and a ground contact pad coupled to a semiconductor substrate of a semiconductor device. The first impedance value is obtained from the measured impedance, and the first impedance value is compared with a reference impedance value to determine whether a structural defect is present in the semiconductor device based on whether the first impedance value is greater than the reference impedance value.
Abstract:
An area array device has a grid array of primary electrical contacts coupled to a coupling surface of the device and configured to carry data signals between the area array package and a circuit board. The area array device also has an additional series of secondary electrical contacts coupled to the coupling surface of the device and configured to carry power signals between the area array package and the circuit board. The additional series of secondary electrical contacts provides a relatively large amount of power to the area array package while allowing a manufacturer to maintain the number of primary electrical contacts of the grid array configured to carrying data signals and therefore maintain the overall performance of the area array package.
Abstract:
An area array device has a grid array of primary electrical contacts coupled to a coupling surface of the device and configured to carry data signals between the area array package and a circuit board. The area array device also has an additional series of secondary electrical contacts coupled to the coupling surface of the device and configured to carry power signals between the area array package and the circuit board. The additional series of secondary electrical contacts provides a relatively large amount of power to the area array package while allowing a manufacturer to maintain the number of primary electrical contacts of the grid array configured to carrying data signals and therefore maintain the overall performance of the area array package.
Abstract:
A circuit board component includes a substrate having non-conductive material and conductive material supported by the non-conductive material. The conductive material defines a circuit board interface, a die interface, a heat spreader interface, and (iv) a set of connections which interconnects the circuit board interface, the die interface and the heat spreader interface. The component further includes a die coupled to the die interface. The die includes integrated circuitry which is configured to electrically communicate with a circuit board when the circuit board couples to the circuit board interface. The component further includes a heat spreader coupled to the heat spreader interface. The heat spreader is configured to dissipate heat from the die. The heat spreader in combination with the heat spreader interface forms an electromagnetic interference shield when a portion of the circuit board interface connects to a ground reference of the circuit board.
Abstract:
A method and a system for automatically activating and deactivating a data logging function on a remotely located medical imaging device from a central service facility in response to acquisition of updated service contract information. Customer profiling and service contract data are automatically processed at a central facility to detect that a medical imaging device is now under contract to receive regular scanner utilization reports. The scanner data logging function is then automatically turned on from the central facility. The central facility then monitors the receipt of scanner data log files to ensure that the first data log file has been successfully transmitted from activated medical imaging device, for processing and subsequent utilization report delivery. In the case of an expired service contract, the data logging feature on the medical imaging device is automatically deactivated from the central facility.
Abstract:
A differential calorimetric gas sensor (10) which includes a sensing element (12) having a catalytic layer (14) disposed on a multi-layered substrate (26). Catalytic layer (14) includes an active catalyst region (14a) which oxidizes total combustibles within an exhaust gas stream and a reference catalyst region (14b) which oxidizes selective combustibles within the exhaust gas stream. An electrochemical oxygen source (18) is disposed on an opposite side of multi-layer substrate (26) from sensing element (12). An oxygen sensor cell (170) may be incorporated into electrochemical oxygen source (18). The multi-layered substrate (26) includes a plurality of overlaying insulating layers in which an intermediate layer (60) and a bottom layer (64) support primary heaters (58, 62), and in which another intermediate layer (52) supports compensation heaters (50a, 50b). The primary heaters (58, 62) function to maintain sensor (10) at a substantially constant temperature, while the compensation heaters (50a, 50b) function to restore temperature deviations determined by temperature-sensitive elements (46a, 46b) located on an inner layer (48) overlaying the compensation heaters (50a, 50b) resulting from the catalytic reactions taking place at the surfaces (34a, 34b) of the catalyst regions (14a, 14b). The control circuitry (300) operates to control the primary heater (58, 62) and the compensation heaters (50a, 50b), as well as to minimize the response variations of the temperature-sensitive elements (46a, 46b).
Abstract:
Techniques are provided for classifying and correcting errors in a bit sequence. At a memory control device, access is requested to a first bit sequences that is stored in a bit sequence database of a memory component and associated with an address. An error is detected in the first bit sequence, and the address associated with the bit sequence is compared to addresses stored in an address database of a content addressable memory component to determine if there is a match. When there is a match, the error is classified as a hard bit error. When there is not a match, the error is classified as a soft bit error.
Abstract:
A method and apparatus are provided in which a cavity is formed in a support structure, the support structure being operable to support a semiconductor device, disposing at least a portion of a circuit element in the cavity in the support structure, filling the cavity in the support structure with an electrically non-conductive filling material so as to at least partially surround the circuit element with the non-conductive filling material, and electrically connecting the semiconductor device to the circuit element. In an example embodiment, the circuit element is operable to substantially block direct current that is output by the semiconductor device or another semiconductor device.
Abstract:
In one embodiment, the reliability of the L2 power and/or ground sub-arrays of contacts of a functional integrated circuit device is verified by applying a reference voltage to a selected contact in sub-array and sequentially measuring the voltage at other contacts in the sub-array. If the voltage levels are greater than a threshold voltage level then the functional integrated circuit device is verified as being reliable.