Abstract:
The invention is directed to a low expansion glass with reduced striae, the glass have a point-to-point variation in titania content is 0.1 wt % or less through its thickness and a CTE of 0±3 ppb/° C. in the temperature range 5-35° C. The invention is further directed to a method for producing the low expansion glass by using a method in which the time for repetition of the oscillation patterns used in the process are 10 minutes or less. In addition, the low expansion glass of the invention can have striae further reduced by heat-treating the glass at temperatures above 1600° C. for a time in the range of 48-160 hours.
Abstract:
Titania-containing silica glass bodies and extreme ultraviolet elements having low levels of striae are disclosed. Methods and apparatus for manufacturing and measuring striae in glass elements and extreme ultraviolet elements are also disclosed.
Abstract:
The invention is directed to a low expansion glass with reduced striae, the glass have a point-to-point variation in titania content is 0.1 wt % or less through its thickness and a CTE of 0±3 ppb/° C. throughout the temperature range 5-35° C. The invention is further directed to a method for producing the low expansion glass by using a method in which the time for repetition of the oscillation patterns used in the process are 10 minutes or less. In addition, the low expansion glass of the invention can have striae further reduced by heat-treating the glass at temperatures above 1600° C. for a time in the range of 48-160 hours. The invention is also directed to optical elements suitable for extreme ultraviolet lithography, which elements are made of a titania-containing silica glass having a titania content in the range of 5-10 wt. %, a polished and shaped surface have a peak-to-valley roughness of less than 10 nm, an average variation in titania content of less than ±0.1 wt. % as measured through the vertical thickness of the glass and a coefficient of thermal expansion of 0±3 ppb/° C. throughout the temperature range 5-35° C.
Abstract:
Disclosed are high purity synthetic silica glass material having a high OH concentration homogeneity in a plane perpendicular to the optical axis, and process of making the same. The glass has high refractive index homogeneity. The glass can have high internal transmission of at least 99.65%/cm at 193 nm. The process does not require a post-sintering homogenization step. The controlling factors for high compositional homogeneity, thus high refractive index homogeneity, include high initial local soot density uniformity in the soot preform and slow sintering, notably isothermal treatment during consolidation.
Abstract:
The invention is directed to a method for reducing striae in ultra-low expansion glass by heat-treating the glass at temperatures above 1600° C. for a time in the range of 72-288 hours. In one embodiment of the invention the glass is heat treated without forcing the glass to flow or “move”. The invention was found to reduce the magnitude of striae in an ultra-low expansion glass by 500%, and particularly reduces most of the “higher frequency” striae.