Abstract:
An apparatus for bonding a semiconductor device onto a substrate (e.g., a printed circuit board) such that solder elements on the device are connected, respectively, to circuit elements on the substrate. The solder elements are heated by passing hot gas onto an opposing surface of the device such that, by heat transference, the solder elements become partially molten to form the desired connections. Pressure is also applied onto the device during this formation to assure planarity at the connection sites. Following formation, cooling of the connections is accomplished. By directing heated gas onto only the semiconductor device and not onto the solder element-circuit member locations (and thus onto the substrate), direct semiconductor device bonding to lower melting point temperature substrates (e.g., those circuit boards containing fiberglass reinforced epoxy resin as a dielectric) may be achieved.
Abstract:
A method of precisely depositing accurately defined quantities of solder onto high density circuit patterns on a substrate without use of a solder mask or the like wherein solder paste is originally deposited within a precisely defined transfer member (e.g., graphite block having holes drilled therein), the transfer member then being aligned relative to the respective circuitry such that when both block and substrate are heated, solder flow and deposition will occur without the use of a solder mask or the like. Following deposition, a second circuit member (e.g., flexible circuit) may be electrically coupled to the substrate's conductors, the deposited solder providing the coupling medium. Hydrogen gas may be used during the heating of the paste and also during the soldering of the flexible circuit to the substrate.
Abstract:
A method of forming electrical connections between a flexible film carrier and an electronic device (e.g., semiconductor chip). The method comprises the steps of aligning the film carrier relative to the device having a plurality of solder mounds located on an upper surface thereof. The film carrier is engaged such that bridging portions of conductive leads thereof physically contact these solder mounds. Hot gas is passed through a screen member to heat the bridging portions of the leads to cause these leads to in turn heat the solder mounds to cause the mounds to become molten, whereafter these leads and mounds are cooled to form the desired solder bonds. The resulting structure may form part of an electronic package, this package also described herein.
Abstract:
This invention relates to a method and apparatus for wire bonding a variety of metals in the interconnection of semiconductor chips to electronic package substrate circuitries. A pair of electrically conducting bonding tip members are provided which are electrically isolated from one another and which are constructed of a material having a high resistivity. The wire is positioned beneath the tip members and a load is applied to the members to force the wire against a land on the substrate. A voltage source is provided to apply a voltage between the tip members. Activitation of the voltage source results in current flow through the tips and through the wire, in series, causing heating of the tip members and of the section of wire beneath them. Diffusion bonding will initiate before a significant amount of oxidation has had time to occur.
Abstract:
A method of bonding a flexible circuitized substrate to a circuitized substrate (e.g., printed circuit board) to interconnect selected circuitry of both substrates using solder. Solder paste is applied over conductive pads on the circuitized substrate and organic dewetting material (e.g., epoxy coating) adjacent thereto. The flexible substrate, having conductors located within and/or traversing an aperture in the flexible substrate's dielectric, is positioned above the solder paste and heat is applied (e.g., in an oven). The paste, dewetting from the organic material, "balls up" and substantially surrounds a solder member (ball) attached to a bridging portion of the flexible substrate's conductor, thereby connecting both substrates. A frame member may be used to align the flexible substrate, both during solder member attachment thereto, as well as for aligning the flexible substrate having solder members attached, to the respective solder paste locations on the lower substrate.
Abstract:
The present invention relates to a circuitized board having removable flexible modules disposed thereon. The flexible modules are mechanically and electrically connected to the board to provide an apertured connect, yet may be easily removed without using heat. The invention also relates to a circuit package including a substrate and a flexible module. The substrate includes a circuit board, a plurality of pads affixed to the circuit board, and a plurality of gold plated metal balls affixed atop the pads. The flexible module includes a flexible dielectric member and gold plated vias disposed in the flexible dielectric member wherein at least some of the vias are positioned over the metal balls so that a line contact is made between the vias and the metal balls.
Abstract:
An electronic package including a first substrate (e.g., printed circuit board), a semiconductor device (e.g., silicon chip), a second circuitized substrate (e.g. polyimide having chrome-copper chrome circuitry thereon) and a heat sink (e.g., extruded aluminum or copper). The heat sink includes pliant members (e.g., pliable leg members) secured thereto or forming part thereof such that the heat sink can be downwardly depressed a predetermined distance to effect contact with the semiconductor device without causing damage thereto. Such downward depression facilitates assembly of the package.
Abstract:
Cured epoxy compositions are removed from substrates by employing compositions containing an organic cyclic alcohol and a surface-active agent.