Abstract:
A method is disclosed that includes allowing both frequency and amplitude of a periodic waveform to be adjusted. The method also includes creating the periodic waveform having the frequency and the amplitude. The periodic waveform is coupled to at least one control signal. The at least one control signal is provided to an output suitable for coupling to an actuator of an electronically controlled device. An apparatus and computer program product are disclosed.
Abstract:
An electrostatic transducer for micromechanical resonators, in which the electrode gaps are filled with a dielectric material having a much higher permittivity than air. This internal electrostatic transducer has several advantages over both air-gap electrostatic and piezoelectric transduction; including lower motional impedance, compatibility with advanced scaled CMOS device technology, and extended dynamic range. In one aspect, in order to minimize energy losses, the dielectric material has an acoustic velocity which is matched to that of the resonator material. Internal electrostatic transduction can be adapted to excite and detect either vertical modes (perpendicular to the substrate) or lateral modes (in the plane of the substrate). Its increased transduction efficiency is of particular importance for reducing the motional resistance of the latter.
Abstract:
A method of depositing silicon carbide on a substrate, including placing a substrate in a low pressure chemical vapor deposition chamber; flowing a single source precursor gas containing silicon and carbon into the chamber; maintaining the chamber at a pressure not less than approximately 5 mTorr; and maintaining the substrate temperature less than approximately 900° C. The Method also includes a method for depositing a nitrogen doped silicon carbide by the addition of nitrogen containing gas into the chamber along with flowing a single source precursor gas containing silicon and carbon into the chamber.
Abstract:
In fabricating a microelectromechanical structure (MEMS), a method of forming a narrow gap in the MEMS includes a) depositing a layer of sacrificial material on the surface of a supporting substrate, b) photoresist masking and at least partially etching the sacrificial material to form at least one blade of sacrificial material, c) depositing a structural layer over the sacrificial layer, and d) removing the sacrificial layer including the blade of the sacrificial material with a narrow gap remaining in the structural layer where the blade of sacrificial material was removed.
Abstract:
Disclosed is an oscillator that relies on redundancy of similar resonators integrated on chip in order to fulfill the requirement of one single quartz resonator. The immediate benefit of that approach compared to quartz technology is the monolithic integration of the reference signal function, implying smaller devices as well as cost and power savings.
Abstract:
A method of etching silicon carbide using a nonmetallic mask layer. The method includes providing a silicon carbide substrate; forming a non-metallic mask layer by applying a layer of material on the substrate; patterning the mask layer to expose underlying areas of the substrate; and etching the underlying areas of the substrate with a plasma at a first rate, while etching the mask layer at a rate lower than the first rate.