Abstract:
According to at least one embodiment of the semiconductor arrangement, the latter comprises a mounting side, at least one optoelectronic semiconductor chip with mutually opposing chip top and bottom, and at least one at least partially radiation-transmissive body with a body bottom, on which the semiconductor chip is mounted such that the chip top faces the body bottom. Moreover, the semiconductor arrangement comprises at least two electrical connection points for electrical contacting of the optoelectronic semiconductor chip, wherein the connection points do not project laterally beyond the body and with their side remote from the semiconductor chip delimit the semiconductor arrangement on the mounting side thereof.
Abstract:
A semiconductor based component with radiation-emitting properties. A glass substrate (1) is provided, which has a first surface (2) and a second surface (1), where a semiconductor element (5) with radiation-emitting properties is accommodated on the first surface (2). Also disclosed is a method for fabricating a semiconductor based component, with the following steps: providing a glass substrate (1), application of a semiconductor element (5) to the first surface (2) of the glass substrate. Also disclosed is a receptacle for a semiconductor based component in which two electrical contact areas (13) are provided, which can be electrically connected to contact areas (7) of the semiconductor based component.
Abstract:
A light emitting diode chip includes a device for protection against overvoltages, e.g., an ESD protection device. The ESD protection device is integrated into a carrier, on which the semiconductor layer sequence of the light emitting diode chip is situated, and is based on a specific doping of specific regions of said carrier. By way of example, the ESD protection device is embodied as a Zener diode that is connected to the semiconductor layer sequence by means of an electrical conductor structure.
Abstract:
A power transmission wheel having a hub and a rim is disclosed. The hub has a central annular portion for operatively engaging a power transmitting shaft. The rim has an inner annular portion and an outer annular portion for operatively engaging a flexible power transmitting element. The central annular portion is disposed inside the inner annular portion with a rolling-element bearing therebetween. At least one hub blade is disposed radially between the inner and outer annular portions. At least one rim blade extends radially from one of the inner and outer annular portions towards the other of the inner and outer annular portions. The power transmission wheel has at least two elastomeric dampers. Each damper is interposed between one of the at least one hub blade and one of the at least one rim blade. An engine and vehicles using the power transmission wheels are also disclosed.
Abstract:
An injection-molded part (1) includes elevations (2) and/or depressions (12) arranged between integrated printed conductors (4). If the elevations (2) or depressions (12) are uncoated and thus electrically insulating, they increase the effective voltage clearances between the printed conductors (4) and the components (3) arranged next to the printed conductors (4). The geometric distances can then be reduced. Alternatively, by electroconductively coating the elevations (2), electric and magnetic shielding is achieved in a simple manner. A cover (6) is provided as a top of a box which uses elevations (2) as side walls. A tapering portion (5) connects coatings (7,7') of the cover (6) and elevations (2) via a printed conductor (8) running diagonally across the tapering portion (5).
Abstract:
A plastic housing is arranged on a carrier element and is provided with a recess in which an optoelectronic component is arranged. On the side facing away from the carrier element, the recess has an opening to the outside which can be provided with a transparent cover. One or more structures can be provided on the plastic housing in order to orient the cover and/or optical components relative to the optoelectronic component.
Abstract:
A light-emitting diode arrangement comprising a plurality of semiconductor chips which are provided for emitting electromagnetic radiation from their front side and which are fixed by their rear side—opposite the front side—on a first main face of a common carrier body, wherein the semiconductor chips consist of a respective substrateless semiconductor layer stack and are fixed to the common carrier body without an auxiliary carrier, and to a method for producing such a light-emitting diode arrangement.
Abstract:
A radiation-emitting component includes a semiconductor chip which has a first main surface, a second main surface on an opposite side from the first main surface and an active region that generates radiation; a carrier on which the semiconductor chip is fixed on the side of the second main surface; an output layer arranged on the first main surface of the semiconductor chip and forming a lateral output surface spaced apart from the semiconductor chip in a lateral direction, a recess tapering in a direction of the semiconductor chip being, formed in the output layer and deflecting radiation emerging from the first main surface during operation into the direction of the lateral output surface.
Abstract:
An arrangement includes a semiconductor chip, which is designed to emit light during operation, and a cover layer, which lies across from the light-emitting surface of the semiconductor chip, such that light emitted from the semiconductor chip penetrates into the cover layer. In an area of the cover layer, overlapping with the chip, a light deflecting structure is provided by means of which light penetrating into the cover layer is deflected. The cover layer acts as an optical waveguide and is designed to emit the light such that it is distributed over the upper surface of cover layer.
Abstract:
An illumination unit comprising a luminescence diode chip mounted on a chip carrier and comprising an optical waveguide is specified. The optical waveguide is joined together from at least two separate parts, wherein the luminescence diode chip is encapsulated by one of the parts of the optical waveguide. A method for producing a luminescence diode chip of this type and also an LCD display comprising an illumination unit of this type are furthermore specified.