Abstract:
Disclosed is a ball land structure suitable for use with a semiconductor package. The ball land structure includes a ball land and a barrier on a core. The barrier may be configured to connect to the ball land so as to form a barrier hole between an edge of the ball land and an edge of the barrier thus exposing a portion of the core. A solder mask may be deposited on the ball land and a portion of the core exposed by the barrier hole so as to partially expose the core.
Abstract:
A semiconductor package circuit board has an indicator for specifying a location of a defective circuit board unit. The semiconductor package circuit board includes circuit board units arranged in an m-by-n matrix pattern. The indicator has marking areas arranged in an m-by-n matrix pattern so that the marking areas are marked in correspondence to locations of identified defective circuit board units of the circuit board units. An operator can readily put a defective mark on the indicator without any confusion. The operator or a sensor can readily recognize the defective mark. Since the indicator can be formed on the circuit board unit, the integration of the semiconductor package circuit board can be increased, and the productivity can be substantially improved. Furthermore, a pathway of the sensor can be reduced, and interferences that might occur if the sensor moves can be hindered.
Abstract:
A novel heat sink structure for being mounted to a module board to which semiconductor chips are attached and for dissipating or spreading heat generated from the semiconductor chips is disclosed. The heat sink comprises a heat sink base, and a coupling means for coupling the heat sink base to the module board. The coupling means passes through the heat sink base. The coupling means includes integrally formed upper and lower body portions, an orifice formed at least through the lower body portion, and a flanged base formed integral with the lower body portion. The flanged base fixes the coupling means to the heat sink base. The outer dimension of the upper body portion is smaller than the inner dimension of the lower body portion. As a result, many heat sinks can be stacked stably.