Abstract:
Photoelectric converters are arranged two-dimensionally in a semiconductor substrate. A planarizing layer, a light shielding film, a further planarizing layer and condenser lenses are formed sequentially on the semiconductor substrate and the photoelectric converters. The light shielding film has apertures at positions corresponding to the photoelectric conversion devices. Multilayer interference filters that transmit either a red, green or blue wavelength component of light are disposed in the apertures.
Abstract:
This invention is directed to offer a semiconductor device having a structure capable of relaxing a mechanical stress applied to a bonding pad. A third interlayer insulation film having via holes is formed on a second interlayer insulation film to cover a third wiring layer. A third conductive layer is formed in the via hole. The third interlayer insulation film is composed of an array of a plurality of hexagonal column-shaped interlayer insulation films. And the via hole and the third conductive layer are formed to surround each hexagonal column-shaped interlayer insulation film. A fourth wiring layer connected with the third wiring layer through the third conductive layer is formed. The fourth wiring layer makes an uppermost wiring layer in an embodiment of this invention and serves as the bonding pad.
Abstract:
This invention is directed to offer a semiconductor device having a structure capable of relaxing a mechanical stress applied to a bonding pad. A third interlayer insulation film having via holes is formed on a second interlayer insulation film to cover a third wiring layer. A third conductive layer is formed in the via hole. The third interlayer insulation film is composed of an array of a plurality of hexagonal column-shaped interlayer insulation films. And the via hole and the third conductive layer are formed to surround each hexagonal column-shaped interlayer insulation film. A fourth wiring layer connected with the third wiring layer through the third conductive layer is formed. The fourth wiring layer makes an uppermost wiring layer in an embodiment of this invention and serves as the bonding pad.
Abstract:
A solid-state imaging device 101 is composed of a transparent film 204, a color filter 205, a planarizing film 207, and a plurality of microlenses 208 that are sequentially formed on a semiconductor substrate 201. A photodiode 202 is formed in a surface of the semiconductor substrate 201 that is closer to the transparent film 204. A light shielding film 203 is formed in a surface of the transparent film 204 that is closer to the semiconductor substrate 201. Color filters 205 respectively corresponding to two adjacent pixels are partitioned by a light shielding wall 206. The light shielding wall 206 is a λ/4 multilayer film that reflects visible light.
Abstract:
A solid-state imaging device is composed of a P-type semiconductor layer, an interlayer insulation film, a multilayer interference filter and condenser lenses which have been successively laminated on an N-type semiconductor layer. A photodiode, in which N-type impurities have been ion-implanted, is formed per pixel in the P-type semiconductor layer on the interlayer insulation film side. The multilayer interference filter has a composition including λ/4 multilayer films and a plurality of spacer layers sandwiched therebetween. The λ/4 multilayer films are composed of alternately laminated monotitanium dioxide layers and monosilicon dioxide layers that have the same optical thickness. The spacer layers have optical thicknesses corresponding to colors of light they are to transmit. A spacer layer is not included in a green region. Instead, two monotitanium dioxide layers, each of which constitutes a λ/4 multilayer film, are adjoined to make a monotitanium dioxide layer with an optical thickness of λ/2.
Abstract:
An infrared gas detector includes an infrared reception member, a package configured to accommodate the infrared reception member, and an optical filter. The infrared reception member includes a plurality of thermal infrared detection elements each configured to detect infrared based on heat caused by received infrared. The thermal infrared detection elements are placed side by side. The package is provided with a window opening configured to allow the infrared reception member to receive infrared. The optical filter is attached to the package so as to cover the window opening, and includes a plurality of filter elements respectively corresponding to the plurality of the thermal infrared detection elements. Each of the filter elements includes a filter substrate made of an infrared transparent material, a transmission filter configured to transmit infrared of a selected wavelength, and a cut-off filter configured to absorb infrared of a wavelength longer than the selected wavelength. The transmission filter and the cut-off filter are formed over the filter substrate. The filter substrate is thermally coupled to the package. The transmission filters of the respective filter elements are configured to transmit infrared of the different selected wavelengths.
Abstract:
The infrared optical filter of the present invention comprises a substrate formed of an infrared transmitting material and a plurality of filter parts arranged side by side on one surface side of the substrate. Each filter part includes: a first λ/4 multilayer film in which two kinds of thin films having mutually different refractive indices but an identical optical film thickness are alternately stacked; a second λ/4 multilayer film in which the two kinds of thin films are alternately stacked, said second λ/4 multilayer film being formed on the opposite side of the first λ/4 multilayer film from the substrate side, and; and a wavelength selection layer interposed between the first λ/4 multilayer film and the second λ/4 multilayer film, said wavelength selection layer having an optical film thickness different from the optical film thickness of each the thin film according to a desired selection wavelength. A low refractive index material of the first λ/4 multilayer film and the second λ/4 multilayer film is an oxide, and a high refractive index material thereof is a semiconductor material of Ge. A material of the wavelength selection layer is identical to a material of the second thin film from the top of the first λ/4 multilayer film.
Abstract:
Photoelectric converters are arranged two-dimensionally in a semiconductor substrate. A planarizing layer, a light shielding film, a further planarizing layer and condenser lenses are formed sequentially on the semiconductor substrate and the photoelectric converters. The light shielding film has apertures at positions corresponding to the photoelectric conversion devices. Multilayer interference filters that transmit either a red, green or blue wavelength component of light are disposed in the apertures.
Abstract:
An optical interference filter whose major component is a film member. The film member includes a plurality of window regions arranged discretely in a surface direction selectively transmit, using an effect of optical interference, light having a waveband that substantially belongs to a visible spectrum, the plurality of window regions being arranged discretely in the surface direction, and one or more boundary regions selectively transmit, using the effect of the optical interference, light having a waveband that substantially belongs to an invisible spectrum excluding the visible spectrum, the one or more the boundary regions being located between adjacent window regions.
Abstract:
In a semiconductor laser device 100, an n-type InGaAsP light confinement layer 2, a multiple quantum well active layer 3, a p-type InGaAsP light confinement layer 4, and a p-type InP cladding layer 5 are formed on an n-type InP substrate 1 to be in a mesa structure extending in stripes along the cavity length direction. Moreover, regions on both sides of this striped mesa are buried with a p-type InP current blocking layer 6 and an n-type InP current blocking layer 7. Furthermore, a p-type InP burying layer 8 and a p-type InGaAsP contact layer 9 are formed thereon. The oscillation wavelength of the semiconductor laser device 100 is around 1.3 .mu.m. The stripe width of the active layer 3 is such that the width W1 at the front end face and the width W2 at the rear end face have a relationship of W1