Abstract:
A semiconductive device is fabricated by forming, within a semiconductive substrate, at least one continuous region formed of a material having a non-uniform composition in a direction substantially perpendicular to the thickness of the substrate.
Abstract:
A process for producing an integrated circuit on the surface of a substrate, the process including: producing a first layer, including active zones and insulating zones, on the surface of the substrate; producing gate zones on the surface of the first layer, the gate zones each being surrounded by insulating spacers; producing source/drain electrodes; producing a dielectric layer between the insulating spacers, the dielectric layer having an upper surface level with the upper surfaces of the gate zones; partially etching each gate zone so as to lower the upper surface of a first part of each gate zone; and depositing an insulating dielectric layer on the first parts of the gate zones.
Abstract:
A nano-imprint device including at least: a substrate, having a surface, on the substrate, a plurality of nano-trenches parallel two by two, each nano-trench extending in a longitudinal direction and being delimited laterally by side walls, the nano-trenches and the side walls being directed substantially perpendicular to the surface of the substrate, each nano-trench comprising a bottom surface with at least one first and one second level in a direction perpendicular to the substrate, respectively of depth h1 and h2>h1, measured relative to the top of the side walls, and the bottom surfaces of the nano-trenches, of the least deep level (h1) being in a first type of material, the side walls being in a second type of material.
Abstract:
The method for forming a multilayer structure on a substrate comprises providing a stack successively comprising an electron hole blocking layer, a first layer made from N-doped semiconductor material having a dopant concentration greater than or equal to 1018 atoms/cm3or P-doped semiconductor material, and a second layer made from semiconductor material of different nature. A lateral electric contact pad is made between the first layer and the substrate, and the material of the first layer is subjected to anodic treatment in an electrolyte.
Abstract translation:在衬底上形成多层结构的方法包括提供连续包含电子空穴阻挡层的叠层,由具有大于或等于1018原子/ cm 3的掺杂浓度的N掺杂半导体材料或P掺杂半导体材料制成的第一层 ,以及由不同性质的半导体材料制成的第二层。 在第一层和衬底之间形成横向电接触垫,并且在电解质中对第一层的材料进行阳极处理。
Abstract:
The method successively comprises production, on a substrate, of a stack of layers comprising at least one first layer made from germanium and silicon compound initially having a germanium concentration comprised between 10% and 50%. The first layer is arranged between second layers having germanium concentrations comprised between 0% and 10%. Then a first zone corresponding to the germanium-based element and having at least a first lateral dimension comprised between 10 nm and 500 nm is delineated by etching in said stack. Then at least lateral thermal oxidization of the first zone is performed so that a silica layer forms on the surface of the first zone and that, in the first layer, a central zone of condensed germanium forms, constituting the germanium-based element.
Abstract:
A method for etching an organic dielectric material layer includes depositing an inorganic barrier layer on the organic dielectric material layer, and depositing an inorganic masking layer on the inorganic barrier layer. A masking resin layer is deposited on the inorganic masking layer. The method further includes patterning the masking resin layer and etching through the inorganic masking layer to expose the inorganic barrier layer. Remaining portions of the masking resin layer are removed, and the exposed inorganic barrier layer is etched to expose the organic dielectric material layer. The method further includes removing remaining portions of the inorganic masking layer, and etching the exposed organic dielectric material layer while using the inorganic barrier layer as a mask.
Abstract:
A process for producing an integrated circuit on the surface of a substrate, the process including: producing a first layer, including active zones and insulating zones, on the surface of the substrate; producing gate zones on the surface of the first layer, the gate zones each being surrounded by insulating spacers; producing source/drain electrodes; producing a dielectric layer between the insulating spacers, the dielectric layer having an upper surface level with the upper surfaces of the gate zones; partially etching each gate zone so as to lower the upper surface of a first part of each gate zone; and depositing an insulating dielectric layer on the first parts of the gate zones.
Abstract:
A method according to the invention enables first and second active zones to be produced on a front face of a support, which said zones are respectively formed by first and second monocrystalline semi-conducting materials that are distinct from one another and preferably have identical crystalline structures. The front faces of the first and second active zones also present the advantage of being in the same plane. Such a method consists in particular in producing the second active zones by a crystallization step of the second semi-conducting material in monocrystalline form, from patterns made of second semi-conducting material in polycrystalline and/or amorphous form and from interface regions between said patterns and preselected first active zones. Moreover, the support is formed by stacking of a substrate and of an electrically insulating thin layer, the front face of the electrically insulating thin layer forming the front face of the support.
Abstract:
A MOS transistor formed in a silicon substrate comprising an active area surrounded with an insulating wall, a first conductive strip covering a central strip of the active area, one or several second conductive strips placed in the active area right above the first strip, and conductive regions placed in two recesses of the insulating wall and placed against the ends of the first and second strips, the silicon surfaces opposite to the conductive strips and regions being covered with an insulator forming a gate oxide.