Abstract:
Processes disclosed are capable of converting biomass into high-crystallinity nanocellulose with low mechanical energy input. In some variations, the process includes fractionating biomass with sulfur dioxide or a sulfite compound and water, to generate cellulose-rich solids and a liquid containing hemicellulose and lignin; and mechanically treating the cellulose-rich solids to form nanofibrils and/or nanocrystals. The total mechanical energy may be less than 500 kilowatt-hours per ton. The crystallinity of the nanocellulose material may be 80% or higher, translating into good reinforcing properties for composites. The nanocellulose material may include nanofibrillated cellulose, nanocrystalline cellulose, or both. In some embodiments, the nanocellulose material is hydrophobic via deposition of some lignin onto the cellulose surface. Optionally, sugars derived from amorphous cellulose and hemicellulose may be separately fermented, such as to monomers for various polymers. These polymers may be combined with the nanocellulose to form completely renewable composites.
Abstract:
The present invention generally provides methods of improving lignin separation during biomass fractionation with an acid to release sugars and a solvent for lignin (such as ethanol). In some embodiments, a digestor is employed to fractionating a feedstock in the presence of a solvent for lignin, sulfur dioxide, and water, to produce a liquor containing hemicellulose, cellulose-rich solids, and lignin. A solid additive is added to the digestor, wherein the solid additive combines with at least a portion of the lignin. Then a mixture of lignin and the solid additive is separated from the liquor, prior to hemicellulose recovery. Optionally, a solid additive may also be introduced to a hydrolysis reactor for converting hemicellulose oligomers to monomers, to improve separation of acid-catalyzed lignin. In some embodiments, the solid additive is gypsum or a gypsum/lignin mixture.
Abstract:
In some variations, the invention provides a deicer composition comprising alkali acetate, a solvent (such as water) for the alkali acetate, and a corrosion inhibitor comprising lignin or a lignin derivative. The acetate and the lignin or lignin derivative are preferably each derived from the same biomass feedstock. In some embodiments, the alkali is selected from the group consisting of potassium, sodium, magnesium, calcium, and combinations thereof. In some embodiments, the alkali acetate is present in a concentration from about 30 wt % to about 99 wt %. Deicer products may be a crystallized or dried form of the deicer composition.
Abstract:
This disclosure provides a polymer composite including a polymer, nanocellulose, and a compatibilizer, wherein the nanocellulose comprises cellulose nanocrystals and/or cellulose nanofibrils, and wherein the compatibilizer comprises a maleated polymer. In some embodiments, the nanocellulose includes lignin-coated nanocellulose. The polymer may be selected from polyethylene, polypropylene, polystyrene, polylactide, or poly(ethylene terephthalate). The maleated polymer may be selected from maleated polyethylene, maleated polypropylene, maleated polystyrene, maleated polylactide, or maleated poly(ethylene terephthalate. Other variations provide a process for compatibilizing a polymer with nanocellulose, comprising: providing a polymer; providing nanocellulose comprising cellulose nanocrystals and/or cellulose nanofibrils; providing a maleated polymer; and combining the polymer, the nanocellulose, and the maleated polymer, wherein the maleated polymer functions as a compatibilizer between the polymer and the nanocellulose.
Abstract:
The present invention provides a pulp product (e.g., paper) comprising cellulose and nanocellulose, wherein the nanocellulose is derived from the cellulose in a mechanical and/or chemical step that is separate from the main pulping process. The pulping process may be thermomechanical pulping or hydrothermal-mechanical pulping, for example. The pulp product is stronger and smoother with the presence of the nanocellulose. The nanocellulose further can function as a retention aid, for a step of forming the pulp product (e.g., in a paper machine). Other embodiments provide a corrugated medium pulp composition comprising cellulose pulp and nanocellulose, wherein the nanocellulose includes cellulose nanofibrils and/or cellulose nanocrystals and the nanocellulose may be hydrophobic. The nanocellulose improves the strength properties of the corrugated medium. In some embodiments, the cellulose pulp is a GreenBox+® pulp and the nanocellulose is derived from the AVAP® process.
Abstract:
Processes disclosed are capable of converting biomass into high-crystallinity nanocellulose with surprisingly low mechanical energy input. In some variations, the process includes fractionating biomass with an acid (such as sulfur dioxide), a solvent (such as ethanol), and water, to generate cellulose-rich solids and a liquid containing hemicellulose and lignin; and mechanically treating the cellulose-rich solids to form nanofibrils and/or nanocrystals. The crystallinity of the nanocellulose material may be 80% or higher, translating into good reinforcing properties for composites. The nanocellulose material may include nanofibrillated cellulose, nanocrystalline cellulose, or both. In some embodiments, the nanocellulose material is hydrophobic via deposition of some lignin onto the cellulose surface. Optionally, sugars derived from amorphous cellulose and hemicellulose may be separately fermented, such as to monomers for various polymers. These polymers may be combined with the nanocellulose to form completely renewable composites.
Abstract:
In some variations, the invention provides a process for producing a microcrystalline cellulose material, comprising: fractionating lignocellulosic biomass feedstock in the presence of an acid, a solvent for lignin, and water, to generate cellulose-rich solids and a liquid containing hemicellulose and lignin; chemically and/or mechanically treating the cellulose-rich solids to form microcrystalline cellulose having an average crystallinity of at least 60%; and recovering the microcrystalline cellulose as a pharmaceutical excipient. The pharmaceutical excipient may function as an antiadherent, a binder, a coating, or a disintegrant. In some embodiments, the pharmaceutical excipient further comprises a lignin-derived lubricant, glidant, sorbent, preservative, or other component. The pharmaceutical excipient may be present in a pill, tablet, capsule, powder, slurry, or other pharmaceutically effective and acceptable form.
Abstract:
Processes disclosed are capable of converting biomass into high-crystallinity nanocellulose with low mechanical energy input. In some variations, the process includes fractionating biomass with lignosulfonic acids, to generate cellulose-rich solids; and mechanically treating the cellulose-rich solids to form nanofibrils and/or nanocrystals. The strong lignosulfonic acids created during delignification give a pH less than 1 and hydrolyze preferentially the amorphous regions of cellulose. The total mechanical energy may be less than 500 kilowatt-hours per ton. The crystallinity of the nanocellulose material may be 80% or higher, translating into good reinforcing properties for composites. The nanocellulose material may include nanofibrillated cellulose, nanocrystalline cellulose, or both. In some embodiments, the nanocellulose material is hydrophobic via deposition of lignin onto the cellulose surface. Optionally, sugars derived from amorphous cellulose and hemicellulose may be separately fermented to co-products.
Abstract:
Processes disclosed are capable of converting biomass into high-crystallinity nanocellulose with surprisingly low mechanical energy input. In some variations, the process includes fractionating biomass with an acid (such as sulfur dioxide), a solvent (such as ethanol), and water, to generate cellulose-rich solids and a liquid containing hemicellulose and lignin; and mechanically treating the cellulose-rich solids to form nanofibrils and/or nanocrystals. The total mechanical energy may be less than 500 kilowatt-hours per ton. The crystallinity of the nanocellulose material may be 80% or higher, translating into good reinforcing properties for composites. The nanocellulose material may include nanofibrillated cellulose, nanocrystalline cellulose, or both. In some embodiments, the nanocellulose material is hydrophobic via deposition of some lignin onto the cellulose surface. Optionally, sugars derived from amorphous cellulose and hemicellulose may be separately fermented, such as to monomers for various polymers. These polymers may be combined with the nanocellulose to form completely renewable composites.
Abstract:
In some variations, OCC is screened, cleaned, deinked, and mechanically refined to generate cellulose nanofibrils. The OCC may be subjected to further chemical, physical, or thermal processing, prior to mechanical refining. For example, the OCC may be subjected to hot-water extraction, or fractionation with an acid catalyst, a solvent for lignin, and water. In certain embodiments to produce cellulose nanocrystals, OCC is exposed to AVAP® digestor conditions. The resulting pulp is optionally bleached and is mechanically refined to generate cellulose nanocrystals. In certain embodiments to produce cellulose nanofibrils, OCC is exposed to GreenBox+® digestor conditions. The resulting pulp is mechanically refined to generate cellulose nanofibrils. The site of a system to convert OCC to nanocellulose may be co-located with an existing OCC processing site. The nanocellulose line may be a bolt-on retrofit system to existing infrastructure. In other embodiments, a dedicated plant for converting OCC to nanocellulose is used.