Abstract:
The invention is a thin film alloy source utilizing a supply of alloy wire selected for deposition onto a substrate. The wire is advanced through an induction heating means at a controlled rate for evaporation onto the substrate. Detection of the meniscus height or temperature of the end of the wire being evpaorated yields a control signal for operating the control wire feed mechanism for advancing the wire at a rate to provide a predetermined coating thickness.
Abstract:
An ESD protection circuit for the pads of an integrated circuit (IC) using silicide-clad diffusions is disclosed. The circuit uses a robust N+ diode with N-well block, an output NFET and a large transient clamp, each with a distributed, integrated N-well drain resistor to prevent the IC from avalanching and leakage during the Human Body Model and Charged Device Model tests for ESD.
Abstract:
An improvement in the method of forming polymerization resists by directing high energy particles such as electron beams along a path across a vacuum chamber and onto polymerizable molecular species at a substrate surface with sufficient energy to polymerize the polymerizable molecular species in situ is provided, comprising maintaining a chamber-isolated relatively higher pressure layer of polymerizable molecular species vapor locally at the substrate surface during, e.g. electron beam exposure to form the resist while maintaining the beam path free of polymerizable molecular species during beam traverse of the chamber. Polymerization resist generation apparatus is also provided comprising a high energy particle, e.g. electron beam source including an electron beam gun and a vacuum chamber therebeyond, means adapted to support a substrate having a surface on which a resist is to be generated in electron beam exposed relation, means defining a closed volume between the supported substrate and the electron beam source, and means to introduce polymerizable molecular species vapor into the closed volume for electron beam exposure and polymerization in situ on the substrate surface.
Abstract:
The method of manufacturing predetermined microcircuit conductor patterns, which includes forming on the surface plane of a substrate a layer of insulator material, forming a layer of resist on the layer of insulator material, patterning the layer of resist to define a channel pattern, etching the channel pattern with relatively overwide channels, conditioning the channel bases to receive plating material, and thereafter filling the overwide channels with the plating material to a height at least substantially co-planar with the insulator material to define the predetermined conductor patterns, removing the mask and plated material thereon to uncover completely the conductor pattern.
Abstract:
The invention is a method of sloping thin film materials so that smooth, continuous films may be deposited thereon. By controlling the thickness of resist mask over the materials (as for patterning) relative to ion milling or sputter etching parameters, repeatable slopes and linewidths may be achieved. For use in bubble memory fabrication, the sloping of conductor walls enables propagation bars to be laid down in crossing over relation thereto while enhancing yield.
Abstract:
An improvement in the method of forming polymerization resists by directing high energy particles such as electron beams along a path across a vacuum chamber and onto polymerizable molecular species at a substrate surface with sufficient energy to polymerize the polymerizable molecular species in situ is provided, comprising maintaining a chamber-isolated relatively higher pressure layer of polymerizable molecular species vapor locally at the substrate surface during, e.g. electron beam exposure to form the resist while maintaining the beam path free of polymerizable molecular species during beam traverse of the chamber. Polymerization resist generation apparatus is also provided comprising a high energy particle, e.g. electron beam source including an electron beam gun and a vacuum chamber therebeyond, means adapted to support a substrate having a surface on which a resist is to be generated in electron beam exposed relation, means defining a closed volume between the supported substrate and the electron beam source, and means to introduce polymerizable molecular species vapor into the closed volume for electron beam exposure and polymerization in situ on the substrate surface.
Abstract:
A method of forming a superconductor-barrier-superconductor junction device by the steps of depositing a first superconductive layer on a substrate, forming a barrier layer on the first superconductive layer and depositing a second superconductive layer on the barrier layer. A layer of photoresist is then deposited over the second superconductive layer and patterned together with the second superconductive layer to form a mesa structure. A dielectric layer is deposited over the mesa structure, and the photoresist layer portion is dissolved thereby lifting off the dielectric portion overlying said second superconductive layer portion.
Abstract:
The invention is an apparatus and method for achieving thin film deposition, of uniform composition, from evaporated alloys. A source of wire alloy, selected for the particular thin film deposition on a substrate, is continuously fed through a region of high speed electron bombardment confined to an end of the wire, for evaporation of the wire in the vicinity of the substrate. An ion flux detector controls the rate of feeding of the wire source in accordance with the detected flux to lay down a uniform thin film of predetermined thickness. A high potential is established between the wire and the source of the electrons and the liberated electrons are guided by the electric field toward the end of the wire being evaporated, which serves as an anode.
Abstract:
The invention is a method of minimizing redeposition of thin film material being removed by ion impact via a patterned resist mask, which invention determines the resist mask etching rates in selected atmospheres and determines the material etching rates in selected atmospheres. Then the mask thickness is selected relative to the material thickness, the ambient gases, and the ion beam parameters to cause the resist mask to be faceted to the edges of underlying material as the unprotected layer is removed such that no resist walls remain to receive redeposited material. A different embodiment of the invention employes a getter mask material between the resist mask and said material where the thickness and etching rates of resist, said material and getter material are relatively selected to cause the unprotected getter material to be removed shortly prior to faceting of the resist down to the protected getter material in a first environment, and continues etching the thin film material in a different environment which also causes resist removal while eroding the getter mask very slowly. The getter mask can thus be very thin to minimize redeposition.