Abstract:
A display device includes a substrate, conductive pads arranged on the substrate over a plurality of rows, and a drive circuit chip including bumps arranged over a plurality of rows to be electrically connected with the conductive pads, and the conductive pads arranged in a same row are arranged in parallel, and the bumps arranged in a same row are arranged in a zigzag form so as to be partially shifted.
Abstract:
A cradle for a metal electrode leadless face (MELF) device is provided. The cradle can include at least one pad, such as a solder pad, to be connected to a printed circuit board (PCB) or similar board. The pad can be configured to receive a MELF device. Such a configuration can improve positioning and alignment of the MELF device and prevent or reduce movement of the MELF device prior to or during soldering. The pad can include boundaries to engage the MELF device for alignment and to prevent or reduce movement. The boundaries of the pad can include inlets, extensions, troughs, borders, and/or other features to engage the MELF device. Boards including such cradles are also provided. Further, methods of installing a MELF device on a board using a cradle are also provided.
Abstract:
A laminated chip electronic component includes: a ceramic body including internal electrodes and dielectric layers; external electrodes formed to cover both end portions of the ceramic body in a length direction; an active layer in which the internal electrodes are disposed in an opposing manner, while having the dielectric layers interposed therebetween, to form capacitance; and upper and lower cover layers formed on upper and lower portions of the active layer in a thickness direction, the lower cover layer having a thickness greater than that of the upper cover layer.
Abstract:
To provide a wiring board excellent in connection reliability with a semiconductor chip. A first buildup layer 31 where resin insulating layers 21 and 22 and a conductor layer 24 are laminated is formed at a substrate main surface 11 side of an organic wiring board 10. The conductor layer 24 for an outermost layer in the first buildup layer 31 includes a plurality of connecting terminal portions 41 for flip-chip mounting a semiconductor chip. The plurality of connecting terminal portions 41 is exposed through an opening portion 43 of a solder resist layer 25. Each connecting terminal portion 41 includes a connection region 51 for a semiconductor chip and a wiring region 52 disposed to extend from the connection region 51 along the planar direction. The solder resist layer 25 includes, within the opening portion 43, a side-surface covering portion 55 that covers the side surface of the connecting terminal portion 41 and a projecting wall portion 56 that is integrally formed with the side-surface covering portion 55 and disposed to project so as to intersect with the connection region 51.
Abstract:
A battery pack includes a connection circuit board connected to the unit cells, a conductive lead drawn out from the connection circuit board, a printed circuit module having an opening into which the conductive lead is inserted, a solder portion formed by solder connection in which the conductive lead is inserted into the opening, wherein the conductive lead has an insertion portion inserted into the opening, a bent portion bent from the insertion portion, and a recess by which the insertion portion is divided.
Abstract:
In a semiconductor device (SP1) according to an embodiment, a solder resist film (first insulating layer, SR1) which is in contact with the base material layer, and a resin body (second insulating layer, 4) which is in contact with the solder resist film and the semiconductor chip, are laminated in between the base material layer (2CR) of a wiring substrate 2 and a semiconductor chip (3). In addition, a linear expansion coefficient of the solder resist film is equal to or larger than a linear expansion coefficient of the base material layer, and the linear expansion coefficient of the solder resist film is equal to or smaller than a linear expansion coefficient of the resin body. Also, the linear expansion coefficient of the base material layer is smaller than the linear expansion coefficient of the resin body. According to the above-described configuration, damage of the semiconductor device caused by a temperature cyclic load can be suppressed, and thereby reliability can be improved.
Abstract:
A multilayer ceramic capacitor may include: a ceramic body including dielectric layers and having first and second main surfaces opposing each other, first and second side surfaces opposing each other, and first and second end surfaces opposing each other; an active layer configured to form capacitance by including first and second internal electrodes disposed to face each other with the dielectric layer interposed therebetween and alternately exposed to the first or second side surface; and a first external electrode disposed on the first side surface and electrically connected to the first internal electrodes and a second external electrode disposed on the second side surface and electrically connected to the second internal electrodes. When length of the ceramic body is L and length of the first and second external electrodes in the length direction of the ceramic body is L1, 0.2≦L1/L≦0.96 is satisfied.
Abstract:
Provided are a nano-scale LED assembly and a method for manufacturing the same. First, a nano-scale LED device that is independently manufactured may be aligned and connected to two electrodes different from each other to solve a limitation in which a nano-scale LED device having a nano unit is coupled to two electrodes different from each other in a stand-up state. Also, since the LED device and the electrodes are disposed on the same plane, light extraction efficiency of the LED device may be improved. Furthermore, the number of nano-scale LED devices may be adjusted. Second, since the nano-scale LED device does not stand up to be three-dimensionally coupled to upper and lower electrodes, but lies to be coupled to two electrodes different from each other on the same plane, the light extraction efficiency may be very improved. Also, since a separate layer is formed on a surface of the LED device to prevent the LED device and the electrode from being electrically short-circuited, defects of the LED electrode assembly may be minimized. Also, in preparation for the occurrence of the very rare defects of the LED device, the plurality of LED devices may be connected to the electrode to maintain the original function of the nano-scale LED electrode assembly.
Abstract:
An array substrate including a display area and a non-display area surrounding the display area. The non-display area includes a pad portion including one or more first pads that each have a parallelogram shape.
Abstract:
A semiconductor device mounting structure includes a semiconductor device and a mounting substrate. The semiconductor device includes a first external connection terminal and a device-side mounting insulating region. The first external connection terminal is provided at a first end and has a metal region on a semiconductor mounting surface of the semiconductor device. The device-side mounting insulating region is defined by the metal region on the semiconductor mounting surface. The semiconductor mounting surface faces a substrate mounting surface. The mounting substrate has on the substrate mounting surface a land pattern made of an electrically conductive material to be electrically connected to the first external connection terminal. The land pattern is provided in a first shape to surround the device-side mounting insulating region and includes a land-side insulating region which has a second shape to correspond to a periphery of the device-side mounting insulating region.