Abstract:
A system automatically determines end user timing across multiple platforms and network browsers. End user timing data may be captured using one or more techniques. The techniques may include utilizing a navigation timing standard and handler call back functionality. The end user timing data may be analyzed to identify which technique's data is most accurate, and the most accurate end user timing data is then reported.
Abstract:
Asynchronous handoffs between threads and other software components may be automatically detected, and the corresponding working objects may be tracked. The system may report monitoring information for an overall transaction that includes the original request and corresponding asynchronous requests. Automatically detecting asynchronous requests may include instrumenting a virtual machine, such as a Java Virtual Machine (JVM), to detect the creation of thread handoff objects and the object and/or thread execution. Thread handoff objects may automatically tracked, tracked based on data learned over time, tracked based on user input, and otherwise configured. In some embodiments, after detecting the creation of a thread handoff object, an identification of the object of the call may be identified as being tracked in another server or application.
Abstract:
A system monitors a network or web application provided by one or more distributed applications and provides data for each and every method instance in an efficient low-cost manner. The web application may be provided by one or more web services each implemented as a virtual machine or one or more applications implemented on a virtual machine. Agents may be installed on one or more servers at an application level, virtual machine level, or other level. The agent may identify one or more hot spot methods based on current or past performance, functionality, content, or business relevancy. Based on learning techniques, efficient monitoring, and resource management, the present system may capture data for and provide analysis information for outliers of a web application with very low overhead.
Abstract:
A mechanism is provided for customizing communication of correlation data between servers using a custom or proprietary communication protocol. The system may modify a payload transmitted between servers to include monitoring parameters. The payload may be modified by expanding a portion of the payload or otherwise inserting data into the payload. The portion may include a header, footer, an additional property, a field, or other portion of the header. A mechanism may detect both outgoing calls and incoming requests to either modify the request with the payload or retrieve the payload from the request. The configuration preferences received from a user may be used to process the detected calls and modify a payload at a designed portion suitable to be expanded. Once sent, the configuration parameters may be used by a recipient server to detect the request with the modified payload and retrieve the monitoring parameter. The monitoring parameter may be used to correlate distributed transactions that occur over a set of servers which communicate with non-standard protocols.
Abstract:
A system monitors a network or web application provided by one or more distributed applications and provides data for each and every method instance in an efficient low-cost manner. Agents may monitor the performance of the distributed application by the web services and report monitoring data as runtime data to the remote server, for example a controller. The controller may analyze the data to identify one or more performance issues or “hot spot” methods based on current or past performance, functionality, content, or business relevancy. Instructions and/or configuration information may be transmitted by the controller to the agents that correspond to a particular business transaction portion associated with a hot spot. The portions are then monitored to collect data associated with the hot spot and the hot spot data is reported back to the controller.
Abstract:
Asynchronous handoffs between threads and other software components may be automatically detected, and the corresponding working objects may be tracked. The system may report monitoring information for an overall transaction that includes the original request and corresponding asynchronous requests. Automatically detecting asynchronous requests may include instrumenting a virtual machine, such as a Java Virtual Machine (JVM), to detect the creation of thread handoff objects and the object and/or thread execution. Thread handoff objects may automatically tracked, tracked based on data learned over time, tracked based on user input, and otherwise configured. In some embodiments, after detecting the creation of a thread handoff object, an identification of the object of the call may be identified as being tracked in another server or application.
Abstract:
Asynchronous handoffs between threads and other software components may be automatically detected, and the corresponding working objects may be tracked. The system may report monitoring information for an overall transaction that includes the original request and corresponding asynchronous requests. Automatically detecting asynchronous requests may include instrumenting a virtual machine, such as a Java Virtual Machine (JVM), to detect the creation of thread handoff objects and the object and/or thread execution. Thread handoff objects may automatically tracked, tracked based on data learned over time, tracked based on user input, and otherwise configured. In some embodiments, after detecting the creation of a thread handoff object, an identification of the object of the call may be identified as being tracked in another server or application.
Abstract:
A system monitors a client request and a backend business transaction performed in response to the request and correlates the data generated from monitoring the request and business transaction. A request may be monitored in detail to determine several metrics. The metrics may include sever connection time, response receipt completion time, document download time, document processing time, and page rendering time. The metrics may be determined for an entire content page as well as individual page elements, such as Iframes and elements constructed from AJAX techniques.
Abstract:
Code intended to operate in an operating system without an isolation mechanism is executed in isolation. The present system enables synthetic transactions to be executed in isolation without affecting other client data and files. Isolation may be outsourced to a separate set of servers that have an operating system which does support isolation. A handshake or other protocol is utilized to maintain secure data and communication. Untrusted script code provided by a customer is isolated in one or more remote servers. To execute the script on a client machine, a key is provided to access this script. A machine at which the script is to be run is provided with the key and the address of the script code on the remote server. A secure connection is established between the client machine and the script code server and script is executed on the client machine.
Abstract:
A system monitors a network or web application provided by one or more distributed applications and provides data for each and every method instance in an efficient low-cost manner. Agents may monitor the performance of the distributed application by the web services and report monitoring data as runtime data to the remote server, for example a controller. The controller may analyze the data to identify one or more performance issues or “hot spot” methods based on current or past performance, functionality, content, or business relevancy. Instructions and/or configuration information may be transmitted by the controller to the agents that correspond to a particular business transaction portion associated with a hot spot. The portions are then monitored to collect data associated with the hot spot and the hot spot data is reported back to the controller.