Abstract:
Embodiments described herein include a susceptor for semiconductor processing including an oriented graphite plate that may have a thickness of at least 1 mm. The susceptor may have a support member, and the oriented graphite plate may be disposed on the support member. The support member may have a center thermal conduit and an edge thermal conduit, and may be substantially solid between the center thermal conduit and the edge thermal conduit.
Abstract:
Embodiments of the present disclosure provide a cover assembly that includes a cover disposed between a device side surface of a substrate and a reflector plate, which are disposed within a thermal processing chamber. The presence of the cover between the device side surface of a substrate and a reflector plate has many advantages over conventional thermal processing chamber designs, which include an improved temperature uniformity during processing, a reduced chamber down time and an improved cost-of-ownership of the processes performed in the thermal processing chamber. In some configurations, the cover includes two or more ports that are formed therein and are positioned to deliver a gas, from a space formed between the reflector plate and the cover, to desired regions of the substrate during processing to reduce the temperature variation across the substrate.
Abstract:
Embodiments of the present invention provide apparatus and method for improving gas distribution during thermal processing. One embodiment of the present invention provides an apparatus for processing a substrate comprising a chamber body defining a processing volume, a substrate support disposed in the processing volume, wherein the substrate support is configured to support and rotate the substrate, a gas inlet assembly coupled to an inlet of the chamber body and configured to provide a first gas flow to the processing volume, and an exhaust assembly coupled to an outlet of the chamber body, wherein the gas inlet assembly and the exhaust assembly are disposed on opposite sides of the chamber body, and the exhaust assembly defines an exhaust volume configured to extend the processing volume.
Abstract:
Embodiments disclosed herein relate to a large vacuum chamber body that has been welded together. The chamber body may have a high emissivity coating on at least one surface therein. Due to the large size of the chamber body, the chamber body may be formed by welding several pieces together rather than forging the body from a single piece of metal. The pieces may be welded together at a location spaced from the corner of the body, which may be under the greatest stress during evacuation, to ensure that the weld, which may be the weakest point in the body, does not fail. At least one surface of the chamber body may be coated with a high emissivity coating to aid in heat transfer from incoming, heated substrates. The high emissivity coating may increase substrate throughput by lowering the time that may be needed to reduce the substrate temperature.
Abstract:
A support ring for semiconductor processing is provided. The support ring includes a ring shaped body defined by an inner edge and an outer edge. The inner edge and outer edge are concentric about a central axis. The ring shaped body further includes a first side, a second side, and a raised annular shoulder extending from the first side of the ring shaped body at the inner edge. The support ring also includes a coating on the first side. The coating has an inner region of reduced thickness region abutting the raised annular shoulder.
Abstract:
A semiconductor processing apparatus is described that has a body with a wall defining two processing chambers within the body; a passage through the wall forming a fluid coupling between the two processing chambers; a lid removably coupled to the body, the lid having a portal in fluid communication with the passage; a gas activator coupled to the lid outside the processing chambers, the gas activator having an outlet in fluid communication with the portal of the lid; a substrate support disposed in each processing chamber, each substrate support having at least two heating zones, each with an embedded heating element; a gas distributor coupled to the lid facing each substrate support; and a thermal control member coupled to the lid at an edge of each gas distributor.
Abstract:
Methods and apparatus for lamp housing crack detection are provided herein. For example, a method associated with a process chamber having a lamp housing comprises sequentially processing a plurality of substrates in the process chamber, during processing of the plurality of substrates, collecting lamp housing data indicative of a fluid leak in the lamp housing from a sensor operably connected to the lamp housing of the process chamber, determining from the lamp housing data whether lamp housing crack is present, and responsive to determining lamp housing crack is present, at least one of triggering an alert or stopping processing of the process chamber.
Abstract:
A support ring for semiconductor processing is provided. The support ring includes a ring shaped body defined by an inner edge and an outer edge. The inner edge and outer edge are concentric about a central axis. The ring shaped body further includes a first side, a second side, and a raised annular shoulder extending from the first side of the ring shaped body at the inner edge. The support ring also includes a coating on the first side. The coating has an inner region of reduced thickness region abutting the raised annular shoulder.
Abstract:
Embodiments of the disclosure relate to methods for measuring temperature and a tool for calibrating temperature control of a substrate support in a processing chamber without contact with a surface of the substrate support. In one embodiment, a test fixture with a temperature sensor is removably mounted to an upper surface of a chamber body of the processing chamber such that the temperature sensor has a field of view including an area of the substrate support that is adjacent to a resistive coil disposed in the substrate support. One or more calibration temperature measurements of the area of the substrate support are taken by the temperature sensor and simultaneously one or more calibration resistance measurements of the resistive coil are taken corresponding to each calibration temperature measurement. Temperature control of a heating element disposed in the substrate support is calibrated based on the calibration temperature and calibration resistance measurements.
Abstract:
Implementations described herein relate to pressure control for vacuum chuck substrate supports. In one implementation, a process chamber defines a process volume and a vacuum chuck support is disposed within the process volume. A pressure controller is disposed on a fluid flow path upstream from the vacuum chuck and a flow restrictor is disposed on the fluid flow path downstream from the vacuum chuck. Each of the pressure controller and flow restrictor are in fluid communication with a control volume of the vacuum chuck.