Abstract:
A cable assembly including first and second header connectors. The first header connector has mating and loading sides and includes electrical contacts. The mating side is configured to mate with a first module connector. The second header connector has mating and loading sides and includes electrical contacts. The mating side of the second header connector is configured to mate with a second module connector. The cable assembly also has a cable bundle including communication cables that extend between the loading sides of the first and second header connectors and that connect the electrical contacts of the first and second header connectors. The cables are substantially twist-free between the first and second header connectors when the first and second header connectors face in substantially opposite directions and the first and second module connectors have an orthogonal relationship.
Abstract:
An electrical connector including a dielectric body and electrical contacts held by the dielectric body. The electrical contacts have a pair of signal contacts with respective mating ends configured to engage a communication connector and also with respective wire-terminating ends. The wire-terminating ends are located proximate to each other in a cable-termination region and are configured to mechanically and electrically couple to corresponding signal conductors of a cable. The electrical connector also includes a ground shield having a cover extension that extends over the cable-termination region. The cover extension is configured to shield the cable-termination region.
Abstract:
An electrical connector including a dielectric body and electrical contacts held by the dielectric body. The electrical contacts have a pair of signal contacts with respective mating ends configured to engage a communication connector and also with respective wire-terminating ends. The wire-terminating ends are located proximate to each other in a cable-termination region and are configured to mechanically and electrically couple to corresponding signal conductors of a cable. The electrical connector also includes a ground shield having a cover extension that extends over the cable-termination region. The cover extension is configured to shield the cable-termination region.
Abstract:
A cable assembly including first and second header connectors. The first header connector has mating and loading sides and includes electrical contacts. The mating side is configured to mate with a first module connector. The second header connector has mating and loading sides and includes electrical contacts. The mating side of the second header connector is configured to mate with a second module connector. The cable assembly also has a cable bundle including communication cables that extend between the loading sides of the first and second header connectors and that connect the electrical contacts of the first and second header connectors. The cables are substantially twist-free between the first and second header connectors when the first and second header connectors face in substantially opposite directions and the first and second module connectors have an orthogonal relationship.
Abstract:
A communication module including a circuit board having leading and trailing ends and a module axis extending therebetween. The communication module also includes a support wall that is coupled to the circuit board proximate to the leading end. The support wall extends transverse to the module axis and has a wall opening. The communication module also includes an electrical connector that is held by the support wall within the wall opening and has a mating face. The communication module also includes a board interconnect coupled to the circuit board. The communication module also includes a flex cable assembly that is coupled at one end to the array of electrical contacts and at an opposite end to the board interconnect. The electrical connector is permitted to float within the wall opening relative to the support wall.
Abstract:
A communication module including a circuit board having leading and trailing ends and a module axis extending therebetween. The communication module also includes a support wall that is coupled to the circuit board proximate to the leading end. The support wall extends transverse to the module axis and has a wall opening. The communication module also includes an electrical connector that is held by the support wall within the wall opening and has a mating face. The communication module also includes a board interconnect coupled to the circuit board. The communication module also includes a flex cable assembly that is coupled at one end to the array of electrical contacts and at an opposite end to the board interconnect. The electrical connector is permitted to float within the wall opening relative to the support wall.
Abstract:
An electrical cable includes a central wire extending a length between opposite ends. The central wire has a periphery. Force wires have winding turns that are wrapped around the periphery of the central wire along the length of the central wire. The force wires include force conductors surrounded by force insulators. Return wires have winding turns that are wrapped around the periphery of the central wire along the length of the central wire. The return wires include return conductors surrounded by return insulators. The winding turns of the return wires are interleaved between the winding turns of adjacent force wires such that the adjacent force wires are separated by at least one return wire.
Abstract:
In one embodiment, a compliant contactor is provided which includes a center conductor and an outer conductor with a spacer therebetween. The outer conductor has a mating end adapted to be capable of flexibly contacting an outer conductor mating surface prior to the center conductor contacting a center conductor mating surface.
Abstract:
In one embodiment, a via structure for a printed circuit board is provided which includes a signal via and an elongated signal conductor strip electrically connected to the signal via. The elongated signal conductor strip is adjacent to a ground conductor and extends from the conductive pad substantially to the ground conductor. The elongated signal conductor strip includes a portion extending laterally outward, which may be configured to have a capacitance so as to establish an impedance for the via structure.
Abstract:
In one embodiment, a laminated printed circuit board translator is provided. In some embodiments, the translator includes a receiving board adapted to receive a pin, the receiving board includes a plated via extending through the receiving board and has a hole for receiving a pin. An interface board laminated with the receiving board has a controlled depth via extending through it to contact a conductive trace. The conductive trace extends between the receiving board and the interface board to connect the plated via of the receiving board with the controlled depth via of the interface board. The controlled depth via is configured so that it is capable of being plated through a single sided drilled opening in the interface board. Some embodiments have a pad on the interface board connected to the controlled depth via.