Systems and Methods for Generating Synthetic Sensor Data via Machine Learning

    公开(公告)号:US20250130909A1

    公开(公告)日:2025-04-24

    申请号:US19007149

    申请日:2024-12-31

    Abstract: The present disclosure provides systems and methods that combine physics-based systems with machine learning to generate synthetic LiDAR data that accurately mimics a real-world LiDAR sensor system. In particular, aspects of the present disclosure combine physics-based rendering with machine-learned models such as deep neural networks to simulate both the geometry and intensity of the LiDAR sensor. As one example, a physics-based ray casting approach can be used on a three-dimensional map of an environment to generate an initial three-dimensional point cloud that mimics LiDAR data. According to an aspect of the present disclosure, a machine-learned model can predict one or more dropout probabilities for one or more of the points in the initial three-dimensional point cloud, thereby generating an adjusted three-dimensional point cloud which more realistically simulates real-world LiDAR data.

    Generating autonomous vehicle testing data through perturbations and adversarial loss functions

    公开(公告)号:US12214801B2

    公开(公告)日:2025-02-04

    申请号:US17528549

    申请日:2021-11-17

    Abstract: Techniques for generating testing data for an autonomous vehicle (AV) are described herein. A system can obtain sensor data descriptive of a traffic scenario. The traffic scenario can include a subject vehicle and actors in an environment. Additionally, the system can generate a perturbed trajectory for a first actor in the environment based on perturbation values. Moreover, the system can generate simulated sensor data. The simulated sensor data can include data descriptive of the perturbed trajectory for the first actor in the environment. Furthermore, the system can provide the simulated sensor data as input to an AV control system. The AV control system can be configured to process the simulated sensor data to generate an updated trajectory for the subject vehicle in the environment. Subsequently, the system can evaluate an adversarial loss function based on the updated trajectory for the subject vehicle to generate an adversarial loss value.

    Systems and methods for generating synthetic sensor data via machine learning

    公开(公告)号:US12222832B2

    公开(公告)日:2025-02-11

    申请号:US18466286

    申请日:2023-09-13

    Abstract: The present disclosure provides systems and methods that combine physics-based systems with machine learning to generate synthetic LiDAR data that accurately mimics a real-world LiDAR sensor system. In particular, aspects of the present disclosure combine physics-based rendering with machine-learned models such as deep neural networks to simulate both the geometry and intensity of the LiDAR sensor. As one example, a physics-based ray casting approach can be used on a three-dimensional map of an environment to generate an initial three-dimensional point cloud that mimics LiDAR data. According to an aspect of the present disclosure, a machine-learned model can predict one or more dropout probabilities for one or more of the points in the initial three-dimensional point cloud, thereby generating an adjusted three-dimensional point cloud which more realistically simulates real-world LiDAR data.

    Systems and Methods for Simulating Dynamic Objects Based on Real World Data

    公开(公告)号:US20250037298A1

    公开(公告)日:2025-01-30

    申请号:US18910738

    申请日:2024-10-09

    Abstract: Systems and methods for generating simulation data based on real-world dynamic objects are provided. A method includes obtaining two- and three-dimensional data descriptive of a dynamic object in the real world. The two- and three-dimensional information can be provided as an input to a machine-learned model to receive object model parameters descriptive of a pose and shape modification with respect to a three-dimensional template object model. The parameters can represent a three-dimensional dynamic object model indicative of an object pose and an object shape for the dynamic object. The method can be repeated on sequential two- and three-dimensional information to generate a sequence of object model parameters over time. Portions of a sequence of parameters can be stored as simulation data descriptive of a simulated trajectory of a unique dynamic object. The parameters can be evaluated by an objective function to refine the parameters and train the machine-learned model.

    Systems and methods for simulating dynamic objects based on real world data

    公开(公告)号:US12141995B2

    公开(公告)日:2024-11-12

    申请号:US17388372

    申请日:2021-07-29

    Abstract: Systems and methods for generating simulation data based on real-world dynamic objects are provided. A method includes obtaining two- and three-dimensional data descriptive of a dynamic object in the real world. The two- and three-dimensional information can be provided as an input to a machine-learned model to receive object model parameters descriptive of a pose and shape modification with respect to a three-dimensional template object model. The parameters can represent a three-dimensional dynamic object model indicative of an object pose and an object shape for the dynamic object. The method can be repeated on sequential two- and three-dimensional information to generate a sequence of object model parameters over time. Portions of a sequence of parameters can be stored as simulation data descriptive of a simulated trajectory of a unique dynamic object. The parameters can be evaluated by an objective function to refine the parameters and train the machine-learned model.

Patent Agency Ranking