-
公开(公告)号:US20250037298A1
公开(公告)日:2025-01-30
申请号:US18910738
申请日:2024-10-09
Applicant: Aurora Operations, Inc.
Inventor: Ming Liang , Wei-Chiu Ma , Sivabalan Manivasagam , Raquel Urtasun , Bin Yang , Ze Yang
Abstract: Systems and methods for generating simulation data based on real-world dynamic objects are provided. A method includes obtaining two- and three-dimensional data descriptive of a dynamic object in the real world. The two- and three-dimensional information can be provided as an input to a machine-learned model to receive object model parameters descriptive of a pose and shape modification with respect to a three-dimensional template object model. The parameters can represent a three-dimensional dynamic object model indicative of an object pose and an object shape for the dynamic object. The method can be repeated on sequential two- and three-dimensional information to generate a sequence of object model parameters over time. Portions of a sequence of parameters can be stored as simulation data descriptive of a simulated trajectory of a unique dynamic object. The parameters can be evaluated by an objective function to refine the parameters and train the machine-learned model.
-
公开(公告)号:US12141995B2
公开(公告)日:2024-11-12
申请号:US17388372
申请日:2021-07-29
Applicant: Aurora Operations, Inc.
Inventor: Ming Liang , Wei-Chiu Ma , Sivabalan Manivasagam , Raquel Urtasun , Bin Yang , Ze Yang
Abstract: Systems and methods for generating simulation data based on real-world dynamic objects are provided. A method includes obtaining two- and three-dimensional data descriptive of a dynamic object in the real world. The two- and three-dimensional information can be provided as an input to a machine-learned model to receive object model parameters descriptive of a pose and shape modification with respect to a three-dimensional template object model. The parameters can represent a three-dimensional dynamic object model indicative of an object pose and an object shape for the dynamic object. The method can be repeated on sequential two- and three-dimensional information to generate a sequence of object model parameters over time. Portions of a sequence of parameters can be stored as simulation data descriptive of a simulated trajectory of a unique dynamic object. The parameters can be evaluated by an objective function to refine the parameters and train the machine-learned model.
-