Systems and Methods for Generating Synthetic Sensor Data via Machine Learning

    公开(公告)号:US20250130909A1

    公开(公告)日:2025-04-24

    申请号:US19007149

    申请日:2024-12-31

    Abstract: The present disclosure provides systems and methods that combine physics-based systems with machine learning to generate synthetic LiDAR data that accurately mimics a real-world LiDAR sensor system. In particular, aspects of the present disclosure combine physics-based rendering with machine-learned models such as deep neural networks to simulate both the geometry and intensity of the LiDAR sensor. As one example, a physics-based ray casting approach can be used on a three-dimensional map of an environment to generate an initial three-dimensional point cloud that mimics LiDAR data. According to an aspect of the present disclosure, a machine-learned model can predict one or more dropout probabilities for one or more of the points in the initial three-dimensional point cloud, thereby generating an adjusted three-dimensional point cloud which more realistically simulates real-world LiDAR data.

    Deep structured scene flow for autonomous devices

    公开(公告)号:US12198358B2

    公开(公告)日:2025-01-14

    申请号:US17962624

    申请日:2022-10-10

    Abstract: Systems, methods, tangible non-transitory computer-readable media, and devices associated with motion flow estimation are provided. For example, scene data including representations of an environment over a first set of time intervals can be accessed. Extracted visual cues can be generated based on the representations and machine-learned feature extraction models. At least one of the machine-learned feature extraction models can be configured to generate a portion of the extracted visual cues based on a first set of the representations of the environment from a first perspective and a second set of the representations of the environment from a second perspective. The extracted visual cues can be encoded using energy functions. Three-dimensional motion estimates of object instances at time intervals subsequent to the first set of time intervals can be determined based on the energy functions and machine-learned inference models.

    Systems and methods for generating synthetic sensor data via machine learning

    公开(公告)号:US12222832B2

    公开(公告)日:2025-02-11

    申请号:US18466286

    申请日:2023-09-13

    Abstract: The present disclosure provides systems and methods that combine physics-based systems with machine learning to generate synthetic LiDAR data that accurately mimics a real-world LiDAR sensor system. In particular, aspects of the present disclosure combine physics-based rendering with machine-learned models such as deep neural networks to simulate both the geometry and intensity of the LiDAR sensor. As one example, a physics-based ray casting approach can be used on a three-dimensional map of an environment to generate an initial three-dimensional point cloud that mimics LiDAR data. According to an aspect of the present disclosure, a machine-learned model can predict one or more dropout probabilities for one or more of the points in the initial three-dimensional point cloud, thereby generating an adjusted three-dimensional point cloud which more realistically simulates real-world LiDAR data.

    Systems and Methods for Simulating Dynamic Objects Based on Real World Data

    公开(公告)号:US20250037298A1

    公开(公告)日:2025-01-30

    申请号:US18910738

    申请日:2024-10-09

    Abstract: Systems and methods for generating simulation data based on real-world dynamic objects are provided. A method includes obtaining two- and three-dimensional data descriptive of a dynamic object in the real world. The two- and three-dimensional information can be provided as an input to a machine-learned model to receive object model parameters descriptive of a pose and shape modification with respect to a three-dimensional template object model. The parameters can represent a three-dimensional dynamic object model indicative of an object pose and an object shape for the dynamic object. The method can be repeated on sequential two- and three-dimensional information to generate a sequence of object model parameters over time. Portions of a sequence of parameters can be stored as simulation data descriptive of a simulated trajectory of a unique dynamic object. The parameters can be evaluated by an objective function to refine the parameters and train the machine-learned model.

    Systems and methods for simulating dynamic objects based on real world data

    公开(公告)号:US12141995B2

    公开(公告)日:2024-11-12

    申请号:US17388372

    申请日:2021-07-29

    Abstract: Systems and methods for generating simulation data based on real-world dynamic objects are provided. A method includes obtaining two- and three-dimensional data descriptive of a dynamic object in the real world. The two- and three-dimensional information can be provided as an input to a machine-learned model to receive object model parameters descriptive of a pose and shape modification with respect to a three-dimensional template object model. The parameters can represent a three-dimensional dynamic object model indicative of an object pose and an object shape for the dynamic object. The method can be repeated on sequential two- and three-dimensional information to generate a sequence of object model parameters over time. Portions of a sequence of parameters can be stored as simulation data descriptive of a simulated trajectory of a unique dynamic object. The parameters can be evaluated by an objective function to refine the parameters and train the machine-learned model.

Patent Agency Ranking