Abstract:
Provided are a gas phase oxidation/decomposition and absorption integrated device and application thereof in a gas-liquid system. The device comprises a housing (100), a motor (102), and a boost regulator (103); the housing (100) is internally provided with a rotating chamber (120) and a discharge chamber (122); the rotating chamber (120) comprises a rotating shaft (119), a turntable (124), a liquid distributor (123), packing layers (110), a guiding round table (111), a liquid inlet (108), a liquid outlet (112), and a first gas outlet (109); the discharge chamber (122) is located under the rotating chamber (120) and comprises a discharge chamber housing (121) and a plasma generator.
Abstract:
The present application provides a high-gravity device for generating nano/micron bubble and a reaction system. In the device, the liquid phase is continuous phase and the gas phase is dispersed phase. A gas enters the interior of the device from a hollow shaft, and the gas is subjected to primary shearing under a shearing effect of aerating micropores to form bubbles; then, the bubbles rapidly disengage from the surface of a rotating shaft under the effect of the rotating shaft rotating at a high speed, and are subjected to secondary shearing under the high-gravity environment with the strong shearing force formed by the rotating shaft to form nano/micron bubbles. The device has the advantages of fastness, stability, and small average particle size. The average particle size of the formed nano/micron bubbles is between 800 nanometers and 50 microns, and the average particle size of the bubbles can be regulated in a range by adjusting the rotating speed of the rotating shaft.
Abstract:
The present application provides a hydrophilic and hydrophobic composite packing-based rotating packed bed and a system. A hydrophobic packing and a hydrophilic packing are formed into a composite packing. When said packing cuts liquid, the hydrophobic packing can sufficiently disperse the liquid so as to make the dispersion of the liquid in the packing zone more uniform, and the wettability of the hydrophilic packing allows the liquid to spread sufficiently so as to increase the wetting efficiency of said packing. The phenomenon of droplet aggregation caused to liquid in a single hydrophobic packing zone and the phenomenon of reduction of liquid turbulence caused to liquid in a single hydrophilic packing zone can be avoided. Therefore, applying a hydrophilic and hydrophobic composite packing to a rotating packed bed can further improve the mass transfer and mixing performance thereof.
Abstract:
Disclosed are a system device for preparing an alkylate oil using a sulfuric acid catalyst and a manufacturing method thereof. The system device comprises a reactor unit (100), a catalyst and hydrocarbon circulation unit (200), a separator unit (300), an isobutane circulation unit (500) and a fractionator unit (400). The reactor unit (100) is connected and in communication with the catalyst and hydrocarbon circulation unit (200) and the separator unit (300) via channels respectively. The catalyst and hydrocarbon circulation unit (200) is connected and in communication with the separator unit (300) via channels. The separator unit (300) is connected and in communication with the isobutane circulation unit (500) and the fractionator unit (400) via channels respectively. The catalyst and hydrocarbon circulation unit (200), the separator unit (300), the isobutane circulation unit (500) and the fractionator unit (400) are connected and in communication with the reactor unit (100) via channels respectively. The reactor unit (100) comprises at least a high gravity reactor. Due to the adopted high gravity reactor capable of highly reinforcing the mixing of materials under high viscosity, the system device can operate at a low temperature of −5° C. and prepare the alkylate oil having an octane number of 97-100 at an alkane/alkene ratio of 2-100.
Abstract:
A high-gravity rotating bed device, including a motor, a rotor and a housing. The rotor and the motor are entirely arranged within the housing. A load-bearing plate is provided within the housing. The load-bearing plate divides the housing into a reaction chamber and a balance chamber. The motor is arranged within the balance chamber. A transmission shaft of the motor passes through the load-bearing plate and is fixedly connected to the rotor arranged within the reaction chamber. A gas inlet, a gas outlet, a liquid inlet and a liquid outlet are arranged on the housing. An externally communicating pipeline is arranged on the balance chamber. Also disclosed is an application of the present high-gravity rotating bed device under high-pressure conditions in operations such as mixing, transferring and reacting.
Abstract:
Disclosed are a system device for preparing an alkylate oil using a sulfuric acid catalyst and a manufacturing method thereof. The system device comprises a reactor unit (100), a catalyst and hydrocarbon circulation unit (200), a separator unit (300), an isobutane circulation unit (500) and a fractionator unit (400). The reactor unit (100) is connected and in communication with the catalyst and hydrocarbon circulation unit (200) and the separator unit (300) via channels respectively. The catalyst and hydrocarbon circulation unit (200) is connected and in communication with the separator unit (300) via channels. The separator unit (300) is connected and in communication with the isobutane circulation unit (500) and the fractionator unit (400) via channels respectively. The catalyst and hydrocarbon circulation unit (200), the separator unit (300), the isobutane circulation unit (500) and the fractionator unit (400) are connected and in communication with the reactor unit (100) via channels respectively. The reactor unit (100) comprises at least a high gravity reactor. Due to the adopted high gravity reactor capable of highly reinforcing the mixing of materials under high viscosity, the system device can operate at a low temperature of −5° C. and prepare the alkylate oil having an octane number of 97-100 at an alkane/alkene ratio of 2-100.
Abstract:
A high-gravity rotating bed device, comprising a motor, a rotor and a housing. The rotor and the motor are entirely arranged within the housing. A load-bearing plate is provided within the housing. The load-bearing plate divides the housing into a reaction chamber and a balance chamber. The motor is arranged within the balance chamber. A transmission shaft of the motor passes through the load-bearing plate and is fixedly connected to the rotor arranged within the reaction chamber. A gas inlet, a gas outlet, a liquid inlet and a liquid outlet are arranged on the housing. An externally communicating pipeline is arranged on the balance chamber. Also disclosed is an application of the present high-gravity rotating bed device under high-pressure conditions in operations such as mixing, transferring and reacting.