Abstract:
The present invention is related to a method for preparing VIB Group metal oxide particles or dispersions, wherein the VIB Group metal is tungsten or molybdenum. The methods include: 1) providing precursors of VIB Group metal oxide, reductants and supercritical fluids. 2) said VIB Group metal oxide particles, or dispersions are obtained by the reaction between said metal oxide precursors, and reductants are under supercritical state in said supercritical fluids. Especially, said VIB Group metal oxide can be tungsten bronze, molybdenum bronze, or tungsten and molybdenum bronze which can be present by the formula AxByMOz. Wherein, A represents element exists in the form of dopant cation; and B represents element exists in the form of dopant anion; O represents oxygen; 0≤x≤1, 0≤y≤1, 0
Abstract:
The present application provides a hydrophilic and hydrophobic composite packing-based rotating packed bed and a system. A hydrophobic packing and a hydrophilic packing are formed into a composite packing. When said packing cuts liquid, the hydrophobic packing can sufficiently disperse the liquid so as to make the dispersion of the liquid in the packing zone more uniform, and the wettability of the hydrophilic packing allows the liquid to spread sufficiently so as to increase the wetting efficiency of said packing. The phenomenon of droplet aggregation caused to liquid in a single hydrophobic packing zone and the phenomenon of reduction of liquid turbulence caused to liquid in a single hydrophilic packing zone can be avoided. Therefore, applying a hydrophilic and hydrophobic composite packing to a rotating packed bed can further improve the mass transfer and mixing performance thereof.
Abstract:
Disclosed are a system device for preparing an alkylate oil using a sulfuric acid catalyst and a manufacturing method thereof. The system device comprises a reactor unit (100), a catalyst and hydrocarbon circulation unit (200), a separator unit (300), an isobutane circulation unit (500) and a fractionator unit (400). The reactor unit (100) is connected and in communication with the catalyst and hydrocarbon circulation unit (200) and the separator unit (300) via channels respectively. The catalyst and hydrocarbon circulation unit (200) is connected and in communication with the separator unit (300) via channels. The separator unit (300) is connected and in communication with the isobutane circulation unit (500) and the fractionator unit (400) via channels respectively. The catalyst and hydrocarbon circulation unit (200), the separator unit (300), the isobutane circulation unit (500) and the fractionator unit (400) are connected and in communication with the reactor unit (100) via channels respectively. The reactor unit (100) comprises at least a high gravity reactor. Due to the adopted high gravity reactor capable of highly reinforcing the mixing of materials under high viscosity, the system device can operate at a low temperature of −5° C. and prepare the alkylate oil having an octane number of 97-100 at an alkane/alkene ratio of 2-100.
Abstract:
A high-gravity rotating bed device, including a motor, a rotor and a housing. The rotor and the motor are entirely arranged within the housing. A load-bearing plate is provided within the housing. The load-bearing plate divides the housing into a reaction chamber and a balance chamber. The motor is arranged within the balance chamber. A transmission shaft of the motor passes through the load-bearing plate and is fixedly connected to the rotor arranged within the reaction chamber. A gas inlet, a gas outlet, a liquid inlet and a liquid outlet are arranged on the housing. An externally communicating pipeline is arranged on the balance chamber. Also disclosed is an application of the present high-gravity rotating bed device under high-pressure conditions in operations such as mixing, transferring and reacting.
Abstract:
Provided are a gas phase oxidation/decomposition and absorption integrated device and application thereof in a gas-liquid system. The device comprises a housing (100), a motor (102), and a boost regulator (103); the housing (100) is internally provided with a rotating chamber (120) and a discharge chamber (122); the rotating chamber (120) comprises a rotating shaft (119), a turntable (124), a liquid distributor (123), packing layers (110), a guiding round table (111), a liquid inlet (108), a liquid outlet (112), and a first gas outlet (109); the discharge chamber (122) is located under the rotating chamber (120) and comprises a discharge chamber housing (121) and a plasma generator.
Abstract:
Disclosed is a transparent, flame-retardant thermally-insulating, UV-blocking polymer composite film, comprising sequentially from the top: a flame retardant layer, a base layer, a thermal insulation layer, and a UV-blocking layer, having a total film thickness of 1 μm to 500 μm, visible light transmittance greater than 80%, UV light transmittance less than 1%, and near-infrared transmittance less than 10%. Also disclosed is a preparation method for the present transparent, flame retardant thermally-insulating, UV-blocking polymer composite film, the technical processes whereof are simple and easy to execute, involve low production costs, and are suitable for industrial mass production. The present transparent, flame retardant thermally-insulating, UV-blocking polymer composite film can be used on such transparent materials and items as glass, windows, protective films, containers and electronic components, and has applications in such fields as construction, transportation, electronics, aerospace and medicine.
Abstract:
The present application provides a continuous preparation system and method for vinylidene chloride. In the present application, by coupling two stages of high gravity reactors, the product vinylidene chloride and water vapor are distilled from a reaction system in form of an azeotrope by adopting a water vapor steam stripping method, and the product obtained using the method has high purity. In addition, by combining steam stripping and high gravity, trichloroethane and alkali solution are rapidly mixed for mass transfer, and the product vinylidene chloride is rapidly distilled from the reaction system in form of the azeotrope (based on rapid diffusion of water vapor), such that the reaction proceeds continuously towards the direction of producing vinylidene chloride, thus significantly improving the conversion rate. As proved by a test apparatus, the present application can stabilize the purity of the vinylidene chloride product at 98% or more (mass fraction), decrease the TOC value of chloride salt wastewater to 100 mg/L or less, and decrease the consumption of materials and the cost of subsequent salt-containing wastewater treatment.
Abstract:
A system and method for preparing epoxy chloropropane is provided in that by coupling three stages of high gravity reactors, the product epoxy chloropropane and water vapor are distilled from a reaction system in form of an azeotrope by adopting a water vapor steam stripping method. Further, by combining the azeotrope with the multiples stages of high gravity reactors, the gas phase mass transfer and the liquid phase mass transfer of the azeotrope are improved aiming at the features of the azeotrope in the reaction system, thus making the overall conversion rate higher. In addition, by combining steam stripping and high gravity, dichloropropanol and alkali solution are rapidly mixed for mass transfer, and the product epoxy chloropropane is rapidly distilled from the reaction system in the form of the azeotrope, such that the reaction proceeds continuously towards the direction of producing epoxy chloropropane, thus significantly improving the conversion rate.
Abstract:
Disclosed are a system device for preparing an alkylate oil using a sulfuric acid catalyst and a manufacturing method thereof. The system device comprises a reactor unit (100), a catalyst and hydrocarbon circulation unit (200), a separator unit (300), an isobutane circulation unit (500) and a fractionator unit (400). The reactor unit (100) is connected and in communication with the catalyst and hydrocarbon circulation unit (200) and the separator unit (300) via channels respectively. The catalyst and hydrocarbon circulation unit (200) is connected and in communication with the separator unit (300) via channels. The separator unit (300) is connected and in communication with the isobutane circulation unit (500) and the fractionator unit (400) via channels respectively. The catalyst and hydrocarbon circulation unit (200), the separator unit (300), the isobutane circulation unit (500) and the fractionator unit (400) are connected and in communication with the reactor unit (100) via channels respectively. The reactor unit (100) comprises at least a high gravity reactor. Due to the adopted high gravity reactor capable of highly reinforcing the mixing of materials under high viscosity, the system device can operate at a low temperature of −5° C. and prepare the alkylate oil having an octane number of 97-100 at an alkane/alkene ratio of 2-100.
Abstract:
Disclosed is a transparent, flame-retardant thermally-insulating, UV-blocking polymer composite film, comprising sequentially from the top: a flame retardant layer, a base layer, a thermal insulation layer, and a UV-blocking layer, having a total film thickness of 1 μm to 500 μm, visible light transmittance greater than 80%, UV light transmittance less than 1%, and near-infrared transmittance less than 10%. Also disclosed is a preparation method for the present transparent, flame retardant thermally-insulating, UV-blocking polymer composite film, the technical processes whereof are simple and easy to execute, involve low production costs, and are suitable for industrial mass production. The present transparent, flame retardant thermally-insulating, UV-blocking polymer composite film can be used on such transparent materials and items as glass, windows, protective films, containers and electronic components, and has applications in such fields as construction, transportation, electronics, aerospace and medicine.