Abstract:
A method for manufacturing a thin film transistor is disclosed. The method includes: manufacturing a gate electrode, a gate insulation layer, an active layer, a source electrode and a drain electrode on a substrate. The active layer is formed from a zirconium indium oxide semiconductor material by a solution process. A thin film transistor, an array substrate, a method for manufacturing an array substrate, a display panel and a display device are also disclosed.
Abstract:
The present invention relates to a processing technology of OLED display, more particularly, relates to a multifunction packaging film and a display apparatus. The multifunction packaging film comprising a plurality of film layers with functions different from each other, wherein the plurality of film layers are laminated with one on another and at least comprise a polarizing film layer, a phase difference film layer, a water and oxygen resistance film layer, and a support film layer. The multifunction packaging film provided in the present invention is attached on the OLED device after performing a simple film packaging on the OLED device, achieving the anti reflection function as well as the water and oxygen resistance function, simplifying the packaging process of the OLED device, effectively reducing the thickness and weight of the OLED device, and enhancing the display quality of the OLED device.
Abstract:
In accordance with some embodiments of the disclosed subject matter, a TFT, a related TFT array substrate, fabricating methods thereof, a display panel and a display device containing the same are provided. A method for fabricating a TFT is provided, the method comprising: forming an initial conductive layer on a base substrate; performing an oxidization process to partially oxidize the initial conductive layer to form an oxidized insulating sub-layer and a non-oxidized conductive sub-layer; and forming an active layer, a source electrode and a drain electrode over the oxidized insulating sub-layer.
Abstract:
The present invention provides a light-emitting apparatus, a method for forming a light-emitting apparatus, and a display apparatus. The light-emitting apparatus comprises at least one OLED light-emitting unit and at least one quantum dot light-emitting unit, wherein the at least one quantum dot light-emitting unit and the at least one OLED light-emitting unit are arranged in series.
Abstract:
A metal oxide semiconductor thin film, a thin film transistor (TFT), methods for fabricating the metal oxide semiconductor thin film and the TFT, and a display apparatus are provided. In some embodiments, the metal oxide semiconductor comprises: a first metal element, a second metal element and a third metal element, wherein: the first metal element is at least one of scandium, yttrium, aluminum, indium, and a rare earth element; the second metal element is at least one of calcium, strontium, and barium; and the third metal element is at least one of titanium and tin.
Abstract:
The present invention discloses an organic electroluminescent display device and a display apparatus, wherein the organic electroluminescent display device employs an optical film lamination as a base substrate or a packaging cover plate, the optical film lamination includes a circular polarizer film, a water-oxygen resistant film and a color resistant film that are located on a supporting substrate, thus it has an antireflection function, a good water-oxygen resistance as well as a full-color display function, so that not only the problem of fussy process and high cost of an OLED display device caused by film application can be solved, but also the problem that the thickness of a flexible OLED display device is increased and thus the device is difficult to be rolled up due to film application is avoided; also, the OLED display device has the advantages of being lighter and thinner and having a better display effect, etc.
Abstract:
The present application discloses a method of fabricating a plurality of electrodes. The method includes forming a hydrophobic pattern containing a hydrophobic material on a base substrate, the hydrophobic pattern has a first ridge on a first edge of the hydrophobic pattern, the hydrophobic pattern has a thickness at the first ridge greater than that in a region outside a region corresponding to the first ridge; removing a portion of the hydrophobic pattern outside the region corresponding to the first ridge; and forming a first electrode on a first side of the first ridge and a second electrode on a second side of the first ridge.
Abstract:
A touch panel, a method for fabricating the same and a touch display device are disclosed. The touch panel includes touch units, each of which includes: a capacitor having a first terminal connected to a first bias voltage; a first transistor having an amorphous silicon active layer, one of a source and a drain of the first transistor is connected to a third bias voltage and the other is connected to a second terminal of the capacitor; a second transistor having an oxide semiconductor active layer, a gate of the second transistor is connected to a scan line, one of a source and a drain of the second transistor is connected to the second terminal of the capacitor and the other is connected to a data line. The touch panel further includes a light-shielding layer; an aperture portion is disposed on a part of the light-shielding layer.
Abstract:
The present disclosure relates to an antenna apparatus. The antenna apparatus may include a first substrate; a second substrate opposite the first substrate; a first antenna layer; an insulating layer; and a conductive layer. The first antenna layer may comprise a plurality of antenna units, each of the plurality of antenna units may comprise a radiation patch and is configured to receive the signals in one of the different frequency ranges. The insulating layer may comprise a plurality of sub-insulating layers; the conductive layer may comprise a plurality of conductive electrodes; and the plurality of the sub-insulating layers, the plurality of the conductive electrodes, and the plurality of the antenna units may be in one-to-one correspondence. The radiation patch, at least one of the plurality of conductive electrodes, and at least one of the plurality of sub-insulating layers may constitute a rectifier diode structure.
Abstract:
A thin-film transistor (TFT) and a manufacturing method thereof. The manufacturing method for the TFT includes: depositing metal film layers on a substrate by a direct current (DC) sputtering method; and forming a metal oxide film layer or metal oxide film layers by completely oxidizing or partially oxidizing the metal film layers. The TFT includes a gate electrode layer and a gate insulating layer which are tightly integrated.