Abstract:
Scanning mechanisms that have application in confocal imaging use electromagnetic actuation to move elements in an optical system. An objective lens mounted to a flexure comprising a magnetic material is actuated in the axial direction by an electromagnet coil. An optical path may pass through the coil. Scanning in transverse directions may be provided using magnetically actuated flexible beams which move the tip of an optical fiber or other pinhole in one or more transverse directions. Actuators may be actuated using driving currents that include an AC component and a DC bias component. The scanning mechanisms may be miniaturized and may be constructed to provide real-time imaging.
Abstract:
Examples of a spectroscopy probe for performing measurements of Raman spectra, reflectance spectra and fluorescence spectra are disclosed. The integrated spectral probe can comprise one or more light sources to provide a white light illumination to generate reflectance spectra, an excitation light to generate an UV/visible fluorescence spectra and a narrow band NIR excitation to induce Raman spectra. The multiple modalities of spectral measurements can be performed within 2 seconds or less. Examples of methods of operating the integrated spectroscopy probe disclosed.
Abstract:
Examples of an optical standard and a calibration apparatus for calibrating or characterizing a spectroscopy system using such optical standard are disclosed. The optical standard can comprises a mixture of acetaminophen and barium sulfate, wherein a mass of the acetaminophen in the mixture is being less than a mass of the BaSO4. Such optical standard can be used in a calibration device for calibrating or characterizing a spectroscopy system. The calibration device can comprise a substrate base with a top surface and a bottom surface. The top surface can include a section for receiving the optical standard sample. The receiving section can be adhesive. The calibration device can further comprise a film that can be attached to the top surface of the substrate base to cover at least the section of the substrate where the optical standard is being placed. The calibration device can be disposed after the calibration measurements are completed. The optical standard and the calibration apparatus using the optical standard can be used as a wavelength calibration standard to calibrate a Raman system, a reflectance reference standard for a reflectance spectral measurement or for a reliability check in a fluorescence spectral system.
Abstract:
Examples of an optical standard and a calibration apparatus for calibrating or characterizing a spectroscopy system using such optical standard are disclosed. The optical standard can comprises a mixture of acetaminophen and barium sulfate, wherein a mass of the acetaminophen in the mixture is being less than a mass of the BaSO4. Such optical standard can be used in a calibration device for calibrating or characterizing a spectroscopy system. The calibration device can comprise a substrate base with a top surface and a bottom surface. The top surface can include a section for receiving the optical standard sample. The receiving section can be adhesive. The calibration device can further comprise a film that can be attached to the top surface of the substrate base to cover at least the section of the substrate where the optical standard is being placed. The calibration device can be disposed after the calibration measurements are completed. The optical standard and the calibration apparatus using the optical standard can be used as a wavelength calibration standard to calibrate a Raman system, a reflectance reference standard for a reflectance spectral measurement or for a reliability check in a fluorescence spectral system.
Abstract:
Examples of a spectroscopy probe for performing measurements of Raman spectra, reflectance spectra and fluorescence spectra are disclosed. The integrated spectral probe can comprise one or more light sources to provide a white light illumination to generate reflectance spectra, an excitation light to generate an UV/visible fluorescence spectra and a narrow band NIR excitation to induce Raman spectra. The multiple modalities of spectral measurements can be performed within 2 seconds or less. Examples of methods of operating the integrated spectroscopy probe disclosed.
Abstract:
Scanning mechanisms that have application in confocal imaging use electromagnetic actuation to move elements in an optical system. An objective lens mounted to a flexure comprising a magnetic material is actuated in the axial direction by an electromagnet coil. An optical path may pass through the coil. Scanning in transverse directions may be provided using magnetically actuated flexible beams which move the tip of an optical fiber or other pinhole in one or more transverse directions. Actuators may be actuated using driving currents that include an AC component and a DC bias component. The scanning mechanisms may be miniaturized and may be constructed to provide real-time imaging.