Abstract:
A system is described comprising self-propelled bodies such as bacteria or nanoparticles, which can be activated with an external field to move in a desired direction. The self-propelled bodies, or swimmers, are contained in a flexible membrane which is mechanically manipulated through the movement of the swimmers. By controlling the applied field, which can be magnetic, chemical or gravitational, the flexible membranes can be translated and/or deformed.
Abstract:
Systems and methods for altering the geometry of a fluid channel to prevent upstream mobility of bacteria, using angled obstacles on the interior of the channel that among other things creates vortices that restrict the mobility. An optimized geometry can be realized by an artificial intelligence algorithm or similar methods based on performance of various configurations of obstacle parameters.
Abstract:
A system is described comprising self-propelled bodies such as bacteria or nanoparticles, which can be activated with an external field to move in a desired direction. The self-propelled bodies, or swimmers, are contained in a flexible membrane which is mechanically manipulated through the movement of the swimmers. By controlling the applied field, which can be magnetic, chemical or gravitational, the flexible membranes can be translated and/or deformed.
Abstract:
Systems and methods for altering the geometry of a fluid channel to prevent upstream mobility of bacteria, using angled obstacles on the interior of the channel that among other things creates vortices that restrict the mobility. An optimized geometry can be realized by an artificial intelligence algorithm or similar methods based on performance of various configurations of obstacle parameters.